Table of Contents

61
Introduction

1.1
Objective
6
1.2
Scope
6
1.3
Major Software Requirements
6
1.4
Document Conventions
6
1.5
Terminology
6
2
Architectural Design
8
2.1
Entity Relationship Diagram
9
2.2
State Transition Diagram
10
3
User Interface Design
12
3.1
Introduction
12
3.2
Features of the Design
12
3.3
User Interface
12
4
Procedural Design
15
4.1
Robotic Arm and Factory Floor
15
4.1.1
Class Axis
16
4.1.2
Class Block
17
4.1.3
Class Claw
17
4.1.4
Class FactoryFloor
18
4.1.5
Class Floor
18
4.1.6
Class Joint
19
4.1.7
Class Robot
21
4.1.8
Class simpleLayout
23
4.2
Parser
23
4.2.1
Class AdaptedStringTokenizer
26
4.2.2
Class AdditionOperator
28
4.2.3
Class ArithmeticEquation
28
4.2.4
Class ArithmeticOperatorTable
28
4.2.5
Class DivisionOperator
28
4.2.6
Interface Equation
28
4.2.7
Class ExpressionElement
29
4.2.8
Class ExpressionElementStack
29
4.2.9
Class ExpressionTest
30
4.2.10
Class GenericGroupingSymbolTable
30
4.2.11
Class GroupingSymbol
30
4.2.12
Class GroupingSymbolTable
31
4.2.13
Class GroupingSymbolTest
33
4.2.14
Class MovementClawchangeRequest
33
4.2.15
Class MovementMovetoRequest
33
4.2.16
Class MovementPickupRequest
33
4.2.17
Class MovementReleaseRequest
33
4.2.18
Class MovementRequestEvent
33
4.2.19
Class MovementRequestEventMulticaster
33
4.2.20
Interface MovementRequestListener
34
4.2.21
Class MovementResetRequest
35
4.2.22
Class MovementRotateRequest
35
4.2.23
Class MovementToggleaxisRequest
35
4.2.24
Class MultiplicationOperator
35
4.2.25
Class NegationOperator
35
4.2.26
Class Operator
35
4.2.27
Class OperatorTable
36
4.2.28
Class ParserTest
37
4.2.29
Class PostfixExpression
37
4.2.30
Class SineOperator
39
4.2.31
Class SubtractionOperator
40
4.2.32
Class TokenizerTest
40
4.2.33
Class VALIIParser
40
4.2.34
Class Variable
41
4.2.35
Interface VariableDereferencer
43
4.2.36
Class VariableReference
44
4.2.37
Class VariableTable
44
4.2.38
Class VariableTest
46
5
Requirements Cross-Reference
47
6
Testing
48
6.1
Scope
48
6.1.1
Purpose
48
6.1.2
Target Audience and Usage
48
6.2
Test Plan
48
6.2.1
Test Phases and Builds
48
6.2.2
Schedule
48
6.2.3
Overhead Software
48
6.2.4
Test Environment and Resources
48
6.2.5
Risk, Responsibilities, and Contingencies
48
6.3
Test Descriptions and Overview
49
6.3.1
Types of tests
49
6.3.2
Test Environment
50
6.4
Module and Integration Test Procedure
50
6.4.1
Order of Integration
50
6.4.2
Unit Tests
50
6.4.3
Integration Tests
55
6.5
Overall Summary of Test Results
56
6.5.1
Module and Integration Test Results Summary
56
6.5.2
Stress Test Results Summary
56
6.5.3
Performance Test Results Summary
57
6.5.4
Usability Results Summary
57
7
Appendix
58
7.1
Description of Member Responsibilities
58
7.2
Robotic Arm Source Code
59
7.2.1
Source for Class Axis
59
7.2.2
Source for Class Block
61
7.2.3
Source for Class Claw
63
7.2.4
Source for Class Factory Floor
65
7.2.5
Source for Class Floor
67
7.2.6
Source for Class Joint
69
7.2.7
Source for Class Robot
75
7.2.8
Source for Class simpleLayout
82
7.3
Parser Source Code
84
7.3.1
Source Code for AdaptedStringTokenizer
84
7.3.2
Source Code for AdditionOperator
89
7.3.3
Source Code for ArithmeticEquation
90
7.3.4
Source Code for AdditionOperatorTable
93
7.3.5
Source Code for DivisionOperator
94
7.3.6
Source Code for Interface Equation
95
7.3.7
Source Code for ExpressionElement
96
7.3.8
Source Code for ExpressionElementStack
99
7.3.9
Source Code for ExpressionTest
102
7.3.10
Source Code for GenericGroupingSymbolTable
107
7.3.11
Source Code for GroupingSymbol
108
7.3.12
Source Code for GroupingSymbolTable
111
7.3.13
Source Code for GroupingSymbolTest
116
7.3.14
Source Code for MovementClawchangeRequest
117
7.3.15
Source Code for MovementMovetoRequest
118
7.3.16
Source Code for MovementPickupRequest
119
7.3.17
Source Code for MovementReleaseRequest
120
7.3.18
Source Code for MovementRequestEvent
121
7.3.19
Source Code for MovementRequestEventMulticaster
123
7.3.20
Source Code for MovementRequestListener
126
7.3.21
Source Code for MovementResetRequest
127
7.3.22
Source Code for MovementRotateRequest
128
7.3.23
Source Code for MovementToggleaxisRequest
130
7.3.24
Source Code for MultiplicationOperator
131
7.3.25
Source Code for NegationOperator
132
7.3.26
Source Code for Operator
133
7.3.27
Source Code for OperatorTable
135
7.3.28
Source Code for ParserTest
138
7.3.29
Source Code for PostfixExpression
140
7.3.30
Source Code for SineOperator
147
7.3.31
Source Code for SubtractionOperator
148
7.3.32
Source Code for TokenizerTest
149
7.3.33
Source Code for VALIIParser
150
7.3.34
Source Code for Variable
156
7.3.35
Source Code for VariableDereferencer
160
7.3.36
Source Code for VariableReference
162
7.3.37
Source Code for VariableTable
163
7.3.38
Source Code for VariableTest
168

List of Tables

13Table 3:1 Commands and Parameters of Parser

Table 4:1 Summary of Classes
16
Table 4:2 Summary of Class Axis
17
Table 4:3 Summary of Class Block
17
Table 4:4 Summary of Class Claw
18
Table 4:5 Summary of Class FactoryFloor
18
Table 4:6 Summary of Class Floor
19
Table 4:7 Summary of Class Joint
21
Table 4:8 Summary of Class Robot
23
Table 4:9 Summary of Class simpleLayout
23
Table 4:10 Summary of Classes for Parser
26
Table 4:11 Summary of Class AdaptedStringTokenizer
28
Table 4:12 Summary of Class AdditionOperator
28
Table 4:13 Summary of Class DivisionOperator
28
Table 4:14 Summary of Interface Equation
29
Table 4:15 Summary of Class ExpressionElement
29
Table 4:16 Summary of Class ExpressionElementStack
30
Table 4:17 Summary of Class ExpressionTest
30
Table 4:18 Summary of Class GroupingSymbol
31
Table 4:19 Summary of Class GroupingSymbolTable
33
Table 4:20 Summary of Class GroupingSymbolTest
33
Table 4:21 Summary of Class MovementRequestEventMulticaster
34
Table 4:22 Summary of Interface MovementRequestListener
34
Table 4:23 Summary of Class MultiplicationOperator
35
Table 4:24 Summary of Class NegationOperator
35
Table 4:25 Summary of Class Operator
36
Table 4:26 Summary of Class OperatorTable
37
Table 4:27 Summary of Class ParserTest
37
Table 4:28 Summary of Class PostfixExpression
39
Table 4:29 Summary of Class SineOperator
40
Table 4:30 Summary of Class SubtractionOperator
40
Table 4:31 Summary of Class TokenizerTest
40
Table 4:32 Summary of Class VALIIParser
41
Table 4:33 Summary of Class Variable
43
Table 4:34 Summary of Interface VariableDereferencer
44
Table 4:35 Summary of Class VariableTable
46
Table 4:36 Summary of Class VariableTest
46
Table 5:1 Requirements Cross-Reference
47
Table 6:1 Unit Testing for Robotic Arm
51
Table 6:2 Unit Testing for Parser………………………………………………………...55
Table 6:2 Integration Testing
56
Table 7:1 Member Responsibilities
58

List of Figures
Figure 2:1 Entity Relationship Diagram
9

Figure 2:2 State Transition Diagram
10

Figure 2:3 Message Processing State Transition Diagram
11

Figure 3:1 Initial View of Applet/Application
12
Figure 3:2 Robot Arm after Parsing Input
14

1 Introduction

1.1 Objective

The goal of the project is to implement a simulation of a robotic arm using three-dimensional graphics that interacts with objects in a three-dimensional virtual world.

The objective of this document is to describe the design and testing of the Java3D Robotic Arm Simulator. The document describes the architectural design, interface design, procedural design, and testing procedure for the software.

1.2 Scope

In its current form the program is designed to allow students to gain experience with the concepts of factory design. The eventual goal for this program is to allow a user to implement a virtual factory wherein different robots may be placed and may interact with a variety of objects. Using this program a user would be able to model an entire factory floor and develop more efficient layouts. The robot control system will implement higher level aspects of efficiency and fault tolerance.

1.3 Major Software Requirements

The platform for the program is Windows NT as there is currently no Linux port of Java 3D. While Java3D is currently being ported to Linux, only beta versions have been released and we did not want any more confusion than we already had.

The Applications Programming Interface (API) is Java 1.2 and Java 3D which currently relies on the lower-level OpenGL graphics system.

1.4 Document Conventions

Any words used to describe the design, user interface, or testing design (is this everything?) are in bold type. References to actual names of objects, function names, or the names of the programs in Courier New 10pt font.
1.5 Terminology

1. Branch Graph:

A graph rooted to a BranchGroup node.

2. BranchGroup (BG):

An extension of Group. This group node can have children attached and is able to be detached from its parent and then attached elsewhere.

3. Denavet-Hartenberg Representation (D-H):

System for representing the position of a robot using 4x4 transformation matrices.

4. End Effector (EE):

Tool attached to the end of the robot arm. In this project it is a simple two-sided grasping hand.

5. Inverse Kinematics:

The problem of finding the parameters of each joint given an EE position and orientation.

6. Kinematics:

The problem of finding the position of the EE given the parameters of each joint.

7. Locale:

The Locale object acts as a container for a collection of subgraphs of the scene graph that are rooted by a BranchGroup node. A Locale also defines a location within the virtual universe.

8. Root Node:

A node within a scene graph that establishes the default environment.

9. Scene Graph:

A collection of branch graphs rooted to a Locale. A virtual universe has one or more scene graphs.

10. Transform3D (T):

This object’s most important data is a 4x4 affine matrix.

11. TransformGroup (TG):

An extension of Group which contains a Transform3D object. The Transform3D is applied cumulatively to all children of the TG.

 Architectural Design

The project is composed of two distinct programs, one controlling the robot and factory floor layout and another that parses the commands given to the robot. The robot listens for events communicating which command has been given. The parsing module throws these events. The parsing module does not control the robot but simply passes the commands.

Entity Relationship Diagram

The primary entities will be:

· Parser: Processes the program entered by the user and throws events to command the robot.

· Robot: Responds to commands given by the parser and change position with respect to the Factory Floor

· FactoryFloor: The control structure for objects that appear in a factory. Provides the base frame of reference.

· Floor: Primarily cosmetic. Gives the user a perspective of three-dimensions on a two-dimensional screen.

· MovementRequestEvent: Contains information from parser sent to the robot.

· Program: List of commands that the user intends the robot to perform.

· User: The person manipulating the robot.

· Link: Geometric section of the robotic arm.

· Joint: Axis at which the link rotates about in the robotic arm.

· Axis: Geometry showing the orientation of each axis (X, Y, Z) for a particular coordinate system.

Figure 2:1 Entity Relationship Diagram

1.6 State Transition Diagram

There are several concurrent processes in the program; the parser runs separately from the robot. The application can be terminated at any time by closing the appletviewer or closing the web browser.

Figure 2:2 State Transition Diagram

Figure 2:3 Message Processing State Transition Diagram

2 User Interface Design

2.1 Introduction

The user interface is a Java applet or application. It consists of a text box in which the user can input commands, a factory floor that contains a robotic arm, and a button to indicate that commands for the robot have been input.

The screen captures in Figure 3:1 and Figure 3:2 show how the applet appears to the user. The captures were taken from the appletviewer and are exactly as they would appear to the user.

2.2 Features of the Design

The layout of the factory floor section of the screen contains a grid layout to allow the user to orient himself inside the three-dimensional model. The joints are also colored to allow them to be distinguishable. A toggleaxis command is also implemented to allow the user to view the coordinate system that each joint is currently defined by.

2.3 User Interface

[image: image1.png]
Figure 3:1 Initial View of Applet/Application
The user inputs information into the text area. Each different command must be on a separate line. The commands are case insensitive and white-space in commands is ignored. Additionally, commas must delimit the parameters. When the “ParseButton” is pressed, the program interprets the commands and performs the specified action in the factory floor to the right.

The following commands can be input with the following parameters.

Command
Parameters
Purpose

Clawchange
An integer
Robot claw will change this integer value. Currently the robot does not respond.

MoveTo
Any integer or integer equations respresenting a point
Robot arm will move to this point. Currently the robot does not respond.

Pickup
An integer object identification number
The robot will pick up the object. Currently the robot does not respond.

Release
None
The robot will drop any object it is holding. Currently the robot does not respond.

Reset
None
Resets the robot back to its original position. Does not turn the coordinate system lines off.

Rotate
Any integer or integer equations representing six angles.
The first angle rotates the first axis and so on. If fewer than six angles are input, only the joints for which there is input are rotated.

Toggleaxis
Any integer 0 through 6.
This turns on a coordinate system for each respective joint. It serves for orientation of a three-dimensional representation in two dimensions.

Table 3:1 Commands and Parameters of Parser

[image: image2.png]
Figure 3:2 Robot Arm after Parsing Input
Pressing the “ParseButton” with

reset

rotate –40, -25, 50, 60, -40, 32

toggleaxis3
as input yields the above picture of the robotic arm. Pressing the “ParseButton” again would yield the same picture but without the coordinate axis as reset does not affect the coordinate systems and toggleaxis would turn the coordinate system off if it is on.

Procedural Design

2.4 Robotic Arm and Factory Floor

Each class in the robotic arm and factory floor code has several modules listed Table 4:1 contains a summary of this information. More detailed information such as the processing narrative, interface descriptions, modules used, data structures, and comments, restrictions, and limitation can be found in subsections.

Class
Interface\Inheritance Description
Public Methods
Variables
Comments/Limitations

Axis
None
Axis

getAxisBG

detachAxis
AxisBG

Red

Blue

Green
None

Block
extends Block
Block

setAppearance
None
None

Claw
None
Claw

getClaw
bx

by

bz

sx

sy

sz

ClawBase

ClawBaseT

AttachPoint
None

FactoryFloor
extends Panel
createSceneGraph

FactoryFloor
George
None

Floor
None
Floor

getFloorGraph
FloorBase
None

Joint
extends BranchGroup
Joint

toggleAxis

reset

addTheta

moveJoint

getTransform

getTransformGroup
theta

alpha

a

d

thetaInit

lowerBound

upperBound

jointTrans

jointTG

haveAxis

axis

axisAttachBG
None

Robot
implements MovementRequestListener
getRobotGraph

movementRequested

Robot
RobotBase

RobotBaseTG

ltBlue

dkBlue

Joint0

Joint1

Joint2

Joint3

Joint4

Joint5

Joint6

Claw
None

simpleLayout
extends Applet
simpleLayout
floor
None

Table 4:1 Summary of Classes
2.4.1 Class Axis

This class simply builds a scene-graph that can be added just about anywhere in the program that shows where the coordinate axis are at that point. The convention is that red is the X-axis, green is the Y-axis, and blue is the Z-axis. This is somewhat of a mnemonic because the “natural” order to say (x, y, z) and (r, g, b). The parallelism keeps the user from getting too confused.

2.4.1.1 Axis.Axis

This is the constructor that builds the geometry and sets the colors for the object. It simply creates the appropriate colors, then makes one cylinder of each color and rotates it into the correct position.

2.4.1.2 Axis.getAxisBG

This is an accessor method that returns the root of this scene-graph.

2.4.1.3 Axis.detach

This method detaches the Axis object from its current parent. This way it is easy to remove the axis from view.

Method
Interface Description
Internal Data Structures
Comments/Limitations

Axis
None
X

Y

Z

XT

YT

ZT

XTG

YTG

ZTG
None

getAxisBG
None
None
None

detach
None
None
I don’t understand how BranchGroup.detach works. Using this method would be great if it would work but it doesn’t so I use other weird ways to do things.

Table 4:2 Summary of Class Axis

2.4.2 Class Block

This class is an extension of the java3D utility class Box. It produces the geometry for a box but has the added capability of being able to set the color of each side individually.

2.4.2.1 Block.Block

This object has three constructors. The first takes no arguments, the second takes three floats and an appearance, and the last takes three floats, an integer bitmask, and an appearance. The constructors in turn call the constructor for the Java3D utility class Box, filling in whatever parameters were not specified.

2.4.2.2 Block.setAppearance

This method sets the appearance of the side specified by the integer argument passed to it. It uses that integer to select the appropriate child from the root of the block’s scene-graph and then changes its appearance attribute.

Method
Interface Description
Internal Data Structures
Comments/Limitations

Block
Accepts either any of the following:

Nothing;

3 floats, 1 Appearance;

3 floats, 1 Appearance, 1 integer
None
The constructor will fill in defaults for input not given.

setAppearance
Accepts 1 Appearance object and one integer
None
Only does anything if the integer is in 1…6. Otherwise does nothing.

Table 4:3 Summary of Class Block
2.4.3 Class Claw

This class contains the functionality of the EE. In the future it will contain code to manipulate it. Currently the claw is virtually immobile, so all it does is draw.

2.4.3.1 Claw.Claw

This is the constructor. It currently simply draws the geometry of the claw and attaches it to the root of the scene-graph. For each geometric section, it constructs the geometry and then orients it appropriately before attaching it to the graph.

2.4.3.2 Claw.getClawBG

This method is an accessor to the root of this object’s scene-graph.

Method
Interface Description
Internal Data Structures
Comments/Limitations

Claw
Accepts two Appearance objects
ClawBack

TransToAttach

ClawBaseTG

Side1T

Side1TG

Side1

Side2T

Side2TG

Side2
As this class is expanded most of the code of this method will be moved to another “createSceneGraph” method. At this point that restructuring is not a priority.

getClawBG
Returns a BranchGroup at the root of the object’s scene-graph
None
None

Table 4:4 Summary of Class Claw

2.4.4 Class FactoryFloor

This class ties together everything going on in the factory. It initializes objects and establishes the relationships between them.

2.4.4.1 FactoryFloor.createSceneGraph

This method builds the scene graph of the floor. It sets the viewPosition, instantiates the robot and floor, and then adds them to the scene and returns the root of the scene-graph it has built.

2.4.4.2 FactoryFloor.FactorFloor

This constructor creates a panel and a canvas on top of it. It then sets up the view side of the scene-graph and adds the BranchGroup returned by createSceneGraph to the Locale.

Method
Interface Description
Internal Data Structures
Comments/Limitations

createSceneGraph
Returns a BranchGroup that is the root of the scene-graph it just built.
objRoot

baseTransG

baseTrans

floor
None

FactorFloor
None
None
None

Table 4:5 Summary of Class FactoryFloor

2.4.5 Class Floor

This object builds the floor of the factory. Elsewhere I refer to the entire thing as the factory floor, but this is simply the wireframe floor that the robot sits on.

2.4.5.1 Floor.Floor

This constructor builds the geometry for the object and attaches it to BranchGroup. Variables are set by the programmer that define the length and width of the floor (it is a square) and the interval of lines. It will only work if the interval divides evenly into the length. It begins by using the length and interval to calculate the number of endpoints necessary to create all the latitudinal lines for the floor. It then goes through and fills a LineArray with the endpoints. This array is used to create two Shape3D objects. The first is added to the root of the graph as-is and displays the latitudinal lines. The other is rotated 90 degrees about the Y-axis and then added. This becomes the set of longitudinal lines.

2.4.5.2 getFloorGraph

This is an accessor to the root of the Floor object.

Method
Interface Description
Internal Data Structures
Comments/Limitations

Floor
None
Red

length

interval

index

FloorTG

FloorGeometry

Latitudinal

Longitudinal

LongitudinalT

LongitudinalTG
This only works if the variable interval divides evenly into length.

getFloorGraph
Returns the BranchGroup that roots the scene-graph
None
None

Table 4:6 Summary of Class Floor

2.4.6 Class Joint

This class contains the representation and functionality of the joints of a revolute-joint robotic arm.

2.4.6.1 Joint.calcTransform

This method uses the joint parameters input to the joint to create a transformation matrix for the joint using the D-H convention. It simply initializes a 4x4 matrix, calculates each element according to the joint-link equations for a PUMA robot. It then sets the new matrix as the Transform3D in a TransformGroup that defines the position of the joint.

2.4.6.2 Joint.Joint

There are two forms of this constructor. The first takes a series of parameters that define the joint’s behavior. This is called for joints 1 through 6. It records the parameters, performs function calls to set up the joint’s TransformGroup, instantiates an Axis object, sets some capabilities, and adds the TransformGroup to itself (it extends BranchGroup).

The second of the two is only called for the 0th joint. In the D-H convention, there is a base and all joints are defined from there via their parameters. This constructor is used to get that 0th joint into position. It takes a 3x3 matrix to set the correct rotations and translates it up to the top of the robot’s stand. It also sets capabilities, instantiates an Axis object, and adds the TransformGroup to itself.

2.4.6.3 Joint.setBGAttribs

This method sets capabilities for the joint. Rather than define all these in each constructor (and have to change both places anytime I want to make a change) I thought it would be better to just do it here and call this function from each constructor.

2.4.6.4 Joint.setupAxis

This method sets the capabilities for a BranchGroup used to attach the Axis object and adds it to the graph. The result is that the joint has a BranchGroup child where the axis will be added (and removed).

2.4.6.5 Joint.toggleAxis

If the joint has its Axis object turned on, this method turns it off, and if the joint has its Axis object turned off, this turns it on.

2.4.6.6 Joint.reset

This method returns the joint to its original position by setting theta equal to the thetaInit value and then recalculating the transformation.

2.4.6.7 Joint.addTheta

This method adds a number of angles to the current position. If this position is outside the joints range, the new angle is set to whichever bound was violated. The transformation is then recalculated and the robot appears at the new position.

2.4.6.8 Joint.degToRad

This method simply converts an angle measure in degrees to radians and returns the radian value.

2.4.6.9 Joint.moveJoint

This method does not work in our current implementation. In it are the vestiges of my many attempts at animating the motion. While currently not functional, in any further improvements to the program, fixing this will be of upmost importance.

2.4.6.10 Joint.getTransform

This is an accessor method that returns the Transform3D object of a Joint.

2.4.6.11 Joint.getTransformGroup

This is an accessor method that returns a reference to the TransformGroup of a Joint.

Method
Interface Description
Internal Data Structures
Comments/Limitations

calcTransform
None
m
None

Joint
Accepts:

inAlpha: alpha param.

inA: a param.

inD: d param.

inLower: lower bounds

inUpper: upper bounds

 --or--

Matrix3f: rotation

Vector3f: translation
None
None

setBGAttribs
None
None
None

setupAxis
None
None
None

toggleAxis
None
None
None

reset
None
None
None

addTheta
Accepts one float, newTheta.
None
This changes the position in an un-animated fasion, hopefully to be phased out soon.

moveJoint
Accepts one float, range.
None
This currently does not work but I hope for it to soon.

getTransform
Returns a Transform3D
None
None

getTransformGroup
Returns a TransformGroup
None
None

Table 4:7 Summary of Class Joint

2.4.7 Class Robot

The Robot class holds the functionality for the robot. Its primary responsibility is to construct the robot and to process whatever events are thrown to it.

2.4.7.1 Robot.addWriteCap

This method adds certain capabilities to various Group objects in the Robot class. It is mainly a time-saving method because as I was testing different configurations I was having to change the same capabilities for several Groups. To avoid this I just change the capabilities in this one method and the change is applied to everything necessary.

2.4.7.2 Robot.degToRad

This method converts a degree angle measurement to a radian angle measurement.

2.4.7.3 Robot.buildRobot

This method builds the geometry for the robot. It starts out by constructing each joint, then builds the geometry for the links, and then builds the entire branch-graph up based at the BranchGroup Robot.RobotBase.

2.4.7.4 Robot.keepUpAppearances

This method simply defines two appearance objects, ltBlue and dkBlue.

2.4.7.5 Robot.getRobotGraph

This method returns a reference to the root of the robot’s branch-graph.

2.4.7.6 Robot.movementRequested

This method processes events coming from the parser and does whatever is required to put the event into motion. If the command is a rotation, it sends the appropriate angle to each joint. If it is a reset, it causes each joint to be restored to its original position. If it is a toggleaxis event, it toggles the axis at the given joint.

2.4.7.7 Robot.processVector

This method takes a point in space and a series of rotations and converts that into a transformation to the coordinate frame they specify. It first sets the rotational components of the matrix and then the translational.

2.4.7.8 Robot.Robot

This is the constructor for the Robot class. First it calls Robot.keepingUpAppearances, then it calls Robot.buildRobot.

Method
Interface Description
Internal Data Structures
Comments/Limitations

AddWriteCap
Accepts a Group object.
None
None

DegToRad
Accepts one float and returns a float
None
None

BuildRobot
None
tempM

Link0

Link0a

Link1

Link2

Link3

Link3a

Link4

Link0T

Link0aT

Link1T

Link2T

Link3T

Link3aT

Link4T

Link0TG

Link0aTG

Link1TG

Link2TG

Link3TG

Link3aTG

Link4TG
None

KeepUpAppearances
None
None
None

MovementRequested
Accepts one MovementRequestEvent
None
Fragments have been commented out which will support future features

ProcessVector
Accepts one MovementRequestEvent
Xrot

Yrot

Zrot

result
This will be used when the inverse kinematics is implemented. This will convert the users input to a 4x4 matrix that can then be passed to the method finding the joint-vector. Currently it is of little use.

Robot
None
None
None

Table 4:8 Summary of Class Robot

2.4.8 Class simpleLayout

This class is the applet that ties everything together. It actually does very little other than initialize the interface and a couple objects.

2.4.8.1 simpleLayout.simpleLayout

It begins by creating a new BorderLayout and adds a FactoryFloor object to the center. It then adds a VALIIParser object to the “West” area and button to the “South.” It also adds the appropriate listeners.

Method
Interface Description
Internal Data Structures
Comments/Limitations

SimpleLayout
None
progInterface
None

Table 4:9 Summary of Class simpleLayout

2.5 Parser

Class
Interface\Inheritance Description
Public Methods
Variables
Comments/Limitations

AdaptedStringTokenizer

Extends java.util.StringTokenizer

hasMoreTokens

nextToken

nextToken

AllowWhitespace
currentIndex
maxIndex
returnTokens
tokens
tokenString
countTokens from stringTokenizer always returns 0

AdditionOperator
Extends Operator

operate

None
None

ArithmeticEquation
extends PostfixExpression

None
None
None

ArithmeticOperatorTable
extends OperatorTable

None
None
None

DivisionOperator
extends Operator

operate

None
None

Interface Equation
All Known Implementing Classes: Postfix Expressions
solution

toString
None
None

ExpressionElement
extends java.lang.Object

toString
typeString

END
GROUPING_SYMBOL

OPERATOR OTHER
START
type
VALUE
VARIABLE
None

ExpressionElementStack

extends java.util.Stack

dump
nextElement
reverse

top
None
None

ExpressionTest
extends java.lang.Object

main

None
None

GenericGroupingSymbolTable
extends GroupingSymbolTable

None
None
None

GroupingSymbol

extends java.lang.Object

isAClosingSymbol
isAnOpeningSymbol
isCloseFor
token
toString
closeToken
openingSymbol
openToken

None

GroupingSymbolTable

extends java.lang.Object

add

getTokens

isAClosingSymbol

isAGroupingSymbol

isAnOpeningSymbol

isBalanced

symbolFor
capacity

size

symbols
None

GroupingSymbolTest
extends java.lang.Object

main

None
None

MovementClawchangeRequest
extends MovementRequestEvent

None
None
None

MovementMovetoRequest
extends MovementRequestEvent

None
None
None

MovementPickupRequest
extends MovementRequestEvent

None
None
None

MovementReleaseRequest
extends MovementRequestEvent
None
None
None

MovementRequestEvent
extends java.awt.AWTEvent

None
arg

CLAWCHANGE

MOVEMENT_FIRST

MOVEMENT_LAST

MOVETO

numberArguments

PICKUP

RELEASE

RESET

ROTATE

TOGGLEAXIS
None

MovementRequestEventMulticaster

extends java.awt.AWTEventMulticaster

implements MovementRequestListener
add

movementRequested
remove

None
None

Interface MovementRequestListener
All Known Implementing Classes: MovementRequestEventMulticaster, ParserTest
movementRequested

None
None

MovementResetRequest
extends MovementRequestEvent
None
None
None

MovementRotateRequest
extends MovementRequestEvent
None
None
None

MovementToggleaxisRequest
extends MovementRequestEvent
None
None
None

MultiplicationOperator
extends Operator

operate

None
None

NegationOperator
extends Operator
operate
None
None

Operator
extends java.lang.Object

isHigherPrecedence isLowerPrecedence operate
toString

numberOperands
precedence
preceededByAnOperand
token
None

OperatorTable
extends java.lang.Object
add
getTokens isAnOperator operatorFor
capacity
operators
size
None

ParserTest

extends java.applet.Applet

implements MovementRequestListener
init
main movementRequested
parseButton
parser
None

PostfixExpression
extends java.lang.Object

implements Equation
infixEquation
setEquation
solution
toString
expression

gt

infixString

op

TESTING
None

SineOperator
extends Operator
operate
None
None

SubtractionOperator
extends Operator

operate
None
None

TokenizerTest
extends java.lang.Object
main
None
None

VALIIParser
extends java.awt.TextArea
addMovementRequestListener

clear

processProgram

removeMovementRequestListener
listener
None

Variable
extends java.lang.Object
dereferencer

hashCode

isFalse

isTrue

setDereferencer

setDereferencer

setValue

toString

valueOf
d

name
None

Interface VariableDereferencer
All Known Implementing Classes:

VariableTable
add

assign

demark

dereference

exists

mark
None
None

VariableReference
extends java.lang.Object

None
name

value
None

VariableTable
Extends java.lang.Object

Implements VariableDereferencer
add

add

assign

demark dereference

exists

isInTable

mark
capacity

marks

marksCapacity

marksSize

size

variables
None

VariableTest
Extends java.lang.Object
main
None
None

Table 4:10 Summary of Classes for Parser

2.5.1 Class AdaptedStringTokenizer

The AdaptedStringTokenizer class extends StringTokenizer to allow the user to use strings as tokens. The StringTokenizer takes a string and a set of tokens and returns a set of strings representing the original string divided according the the tokens. For example, a common set of tokens is the whitespace characters. The string "the quick brown fox" would tokenize to: "the", "quick", "brown", "fox". When the next token is called for any preceeding delimiters are skipped then from the first character that isn't a delimiter characters are added to the out string until another token is hit.

2.5.1.1 AdaptedStringTokenizer. nextToken

There are several different cases for what can be considered tokens depending on the states of different flags. The stringTokenizer is represented internally as a string and then an index into the string representing the point to which it has been tokenized thus far. Under the default conditions the tokenizer is set not to return whitespace and it is set to return the delimiters. For this case the next token will forward the internal index while the current character is whitespace then if the substring begins with a delimiter then all the delimiters are checked and the longest is returned as the next token. Otherwise the index is forwarded until a delimiter is hit or more whitespace is hit. Changing the allow whitespace flag will keep the preceeding whitespace from being skipped and it will also make it so that tokens are only delimited by the delimiters. If the return tokens is turned off then at the beginning in addition to skipping whitespace any initial delimiters are also skipped.

2.5.1.2 AdaptedStringTokenizer.nextToken

Operates the same as nextToken() but before the processing is begun the set of delimiters is replaced.

2.5.1.3 AdaptedStringTokenizer.skipDelimiters

Internal method to skip over delimiters in the string being tokenized until a non-delimiter is reached.

2.5.1.4 AdaptedStringTokenizer.skipWhitespace

Internal method to skip over whitespace (as defined in Charater.isWhitespace()) characters in the string being tokenized until a non-whitespace character is reached.

2.5.1.5 AdaptedStringTokenizer.startsWithToken

Internal method representing the state of the current substring left from the tokenization to this point.

Method
Interface Description
Internal Data Structures
Comments/Limitations

nasMoreTokens
Returns: whether or not a subsequent call to nextToken will return an element

Overrides:hasMoreTokens in class java.util.StringTokenizer
None
None

nextToken
Returns: the next substring of the original string which meets the criteria as a token

Overrides: nextToken in class java.util.StringTokenizer
None
None

nextToken
Parameters: t - the new set of delimiters

Returns: the next substring of the original string which meets the criteria as a token
None
None

skipDelimiters
Overrides: skipDelimiters in class java.util.StringTokenizer
None
None

skipWhitespace
None
None
None

startsWithToken
Returns: whether or not the current substring begins with a delimiter
None
None

Table 4:11 Summary of Class AdaptedStringTokenizer

2.5.2 Class AdditionOperator

This represents the operator + in an arithmetic equation; as in 3 + 5 = 8.

 Method
Interface Description
Internal Data Structures
Comments/Limitations

operate
Parameters: x[] - the operands

Returns: x[0] + x[1]

Overrides: operate in class Operator
None
None

Table 4:12 Summary of Class AdditionOperator

2.5.3 Class ArithmeticEquation

This class represents an arithmetic equation. For information on the storage method see the constructor and PostfixExpression.setEquation(ExpressionElementStack). For information about how the solution is found, see PostfixExpression.solution().

2.5.4 Class ArithmeticOperatorTable

Class which represents all of the operators that may be allowed in a simple arithmetic equation: + (AdditionOperator), * (MultiplicationOperator), / (DivisionOperator), - (SubtractionOperator), and - (NegationOperator)).

Also to demonstrate the capacity of multiple character delimiters in AdaptedStringTokenizer the operator SineOperator is also included.

2.5.5 Class DivisionOperator

This represents the operator / in an arithmetic equation; as in 6 / 2 = 3.

 Method
Interface Description
Internal Data Structures
Comments/Limitations

operate
Parameters: x[] - the operands

Returns: x[0] + x[1]

Overrides: operate in class Operator
None
None

Table 4:13 Summary of Class DivisionOperator

2.5.6 Interface Equation

This is an interface representing the implementing object is an equation.

2.5.6.1 Equation.solution

Returns the solution for the equation. Currently only integer equations are supported.

2.5.6.2 Equation.toString

Returns a string representing the equation.

Method
Interface Description
Internal Data Structures
Comments/Limitations

solution
Returns: the solution for the equation
None
None

toString
Returns: string representing the equation being solved

Overrides: toString in class java.lang.Object
None
None

Table 4:14 Summary of Interface Equation

2.5.7 Class ExpressionElement

This class represents an element of an expression. The possible elements that this class may act for a wrapper for are: Integer, Variable, Operator, and GroupingSymbol.

Method
Interface Description
Internal Data Structures
Comments/Limitations

toString
Overrides: toString in class java.lang.Object
None
None

typeString
None
None
None

Table 4:15 Summary of Class ExpressionElement

2.5.8 Class ExpressionElementStack

This is a simple extension of Stack that is designed specifically to hold ExpressionElements. The major additions are nextElement() which returns an ExpressionElement as opposed the Object that is usually returned. The same goes for top() which adds the same typecasting for Stack.peek().

Other functionality added was the capacity to reverse() the elements in the stack and to dump() the information in the stack to java.lang.System.out.

2.5.8.1 ExpressionElementStack.dump

Prints the elements of the stack to java.lang.System.out. Each element is on its own line and includes the ExpressionElement.typeString() and a string representation of the element.

This function is useful for debugging.

2.5.8.2 ExpressionElementStack.nextElement

Removes the top element from the stack and returns it.

2.5.8.3 ExpressionElementStack.reverse

Reverses the order of the elements in the stack. The algorithm used is this:
· n = the size of the stack

· i = 1

· while i < n - i

· swap elements i and n - i

· i = i + 1

This method is useful because sometimes when a stack is being created it ends up being created in the reverse order than what it needs to be in to be useful. (Like ArithmeticEquation.ArithmeticEquation(java.lang.String) for example.) A stack is a First In Last Out structure and what is needed sometimes is a Last In Last Out structure. In order to get one I could either create a new queue type or add this method to stack. This was by far the more efficient solution.

2.5.8.4 ExpressionElementStack.top

Check the top element from the stack and returns it; the top remains on the stack.

Method
Interface Description
Internal Data Structures
Comments/Limitations

dump
None
None
None

nextElement
Returns: the top of the stack
None
None

reverse
None
None
None

top
Returns: the top of the stack
None
None

Table 4:16 Summary of Class ExpressionElementStack

2.5.9 Class ExpressionTest

This is a driver program to test the ArithmeticEquation class.

 Method
Interface Description
Internal Data Structures
Comments/Limitations

main
None
None
None

Table 4:17 Summary of Class ExpressionTest

2.5.10 Class GenericGroupingSymbolTable

Creates a new GroupingSymbolTable containing the symbols '(', ')', '[', ']', '{' and '}'.

2.5.11 Class GroupingSymbol

This class represents a grouping symbol in an equation. Grouping symbols are used to change the order in which an infix equation is solved. Normally an equation is solved it is solved left to right and according to the order of operations. Grouping symbols allow one to specify that certain operations that would normally occur later in the solving can occur earlier.

Parentheses are common grouping symbols for instance. The use of parenthesis allows one to change the meaning of 3 + 4 / 14 from 3 2/7 to (3 + 4) / 14 which is 7.

2.5.11.1 GroupingSymbol.isAClosingSymbol

Tells if the current symbol represents the close of a group.

2.5.11.2 GroupingSymbol.isAnOpeningSymbol

Tells if the current symbol represents the beginning of a group.

2.5.11.3 GroupingSymbol.isCloseFor

Tells whether o is the opposing symbol for this symbol.

2.5.11.4 GroupingSymbol.token

Returns the appropriate token representing this grouping symbol. If the symbol is an open then openToken is returned otherwise closeToken is returned.

Method
Interface Description
Internal Data Structures
Comments/Limitations

isAClosingSymbol
Returns: true if the symbol closes a group
None
None

isAnOpeningSymbol
Returns: true if the symbol begins a group
None
None

isCloseFor
Parameters: o - the grouping symbol to be checked against
None
None

token
Returns: the token for the current symbol
None
None

toString
Returns: returns the value of token()

Overrides: toString in class java.lang.Object
None
None

Table 4:18 Summary of Class GroupingSymbol

2.5.12 Class GroupingSymbolTable

Much like OperatorTable this call serves as a holder for a set of other objects and acts as an interface to allow use of them. In this case the objects are GroupingSymbols.

The most common usage of GroupingSymbolTable is GenericGroupingSymbolTable.

2.5.12.1 GroupingSymbolTable.add

Adds a GroupingSymbol to the table. If there is not room in the table for the symbol then (in the fashion of Vector) the capacity is doubled thereby making space.

2.5.12.2 GroupingSymbolTable.isAClosingSymbol

Identifies String token as being a closing symbol or not. If token is not in the table then a NotATableElementExcepetion will be thrown (once I get that running.)

2.5.12.3 GroupingSymbolTable.isAGroupingSymbol

Identifies String token as being an opening symbol or not. If token is not in the table then a NotATableElementExcepetion will be thrown (once I get that running.)

2.5.12.4 GroupingSymbolTable.isAnOpeningSymbol

Identifies String token as being an opening symbol or not. If token is not in the table then a NotATableElementExcepetion will be thrown (once I get that running.)

2.5.12.5 GroupingSymbolTable.isBalanced

Checks if an infix expression is balanced. An expression has balanced grouping symbols if every grouping symbol that is opened is closed and each closing symbol closes the most recent opening symbol.

For example, ((x + y) / 3) * 5 is balanced because there are two open parentheses '(' and two closes and each close works on the most recently opened symbol. ([x + y] / 3) * 5 is balanced for the same reason, but ([x + y) / 3] * 5 is not because when the closing symbol ')' is reached the current open symbol is ']' and the two don't match. Similarly ([x + y] / 3 * 5 is not valid because there is no close for the initial '('.

2.5.12.6 GroupingSymbolTable.symbolFor

Identifies String token and returns the appropriate GroupingSymbol. If token is not in the table then a NotATableElementExcepetion will be thrown (once I get that running.)

Method
Interface Description
Internal Data Structures
Comments/Limitations

add
Parameters: o - symbol to be added
None
None

getTokens
Returns: a String array containing the tokens for the GroupingSymbols in the table.
None
None

isAClosingSymbol
Parameters: token - String to be identified

Returns: true if token may end a group
None
None

isAGroupingSymbol
Parameters: token - String to be identified

Returns: true if token is in the table
None
None

isAnOpeningSymbol
Parameters: token – String to be identified

Returns: true if token may begin a group
None
None

isBalanced
Parameters: s - infix equation to check the balance of

Returns: whether s is balanced or not
None
None

symbolFor
Parameters: token – String to be identified

Returns: the GroupingSymbol for token.
None
None

Table 4:19 Summary of Class GroupingSymbolTable

2.5.13 Class GroupingSymbolTest

Driver and test program for GenericGroupingSymbolTable.

Method
Interface Description
Internal Data Structures
Comments/Limitations

main
None
None
None

Table 4:20 Summary of Class GroupingSymbolTest

2.5.14 Class MovementClawchangeRequest

Requests that the listener change the openness of the claw.

2.5.15 Class MovementMovetoRequest

Requests that the listener move to a specific (X, Y, Z) coordinate.

2.5.16 Class MovementPickupRequest

Requests that the listener pick up an object.

2.5.17 Class MovementReleaseRequest

Requests that the listener put down any object that it may be holding.

2.5.18 Class MovementRequestEvent

This is the class that serves to notify a MovementRequestListener that a movement has been requested.

2.5.19 Class MovementRequestEventMulticaster

An event multicaster allows for multiple listeners to be registered for a single broadcaster. The way that it works is this: each event multicaster is itself an event listener and each multicaster sends objects to two listeners. When a listener is added to the multicaster the multicaster adds a second multicaster as its second listener and then that multicaster sets the listenere being added as its first listener (leaving the second slot open for the addition of another multicaster so as to add another listener.

Essentially the process is the creation of a chain. When a new link is added to the chain it travels to the end.

When an event is broadcast it simply travels down the chain being sent to each listener along the way.

2.5.19.1 MovementRequestEventMulticaster.add

Adds a listener a and multicaster b to the list. Remember that a MovementRequestEventMulticaster is a MovementRequestListener
2.5.19.2 MovementRequestEventMulticaster.movementRequested

This is the implementation that allows this class to implement MovementRequestListener. A call to this begins the chain.

2.5.19.3 MovementRequestEventMulticaster.remove

Removes a listener a and multicaster b from the list. Remember that a MovementRequestEventMulticaster is a MovementRequestListener
Method
Interface Description
Internal Data Structures
Comments/Limitations

add
Parameters:

a - object listening

b - multicaster to chain
None
None

addInternal
None
None
None

movementRequested
Specified by: movementRequested in interface MovementRequestListener

Parameters: e - the event to broadcast
None
None

remove
Overrides: remove in class java.awt.AWTEventMulticaster
None
None

remove
Parameters:

a – object listening

b – multicaster
None
None

Table 4:21 Summary of Class MovementRequestEventMulticaster

2.5.20 Interface MovementRequestListener

Represents that a class has the capacity to process MovementRequestEvents.

Method
Interface Description
Internal Data Structures
Comments/Limitations

movementRequested
None
None
None

Table 4:22 Summary of Interface MovementRequestListener

2.5.21 Class MovementResetRequest

Requests that the listener reset to a default position.

2.5.22 Class MovementRotateRequest

Requests that the listener rotate its joints.

2.5.23 Class MovementToggleaxisRequest

Requests that a listener toggle a coordinate axis for one of its joints.

2.5.24 Class MultiplicationOperator

This represents the operator * in an arithmetic equation; as in 3 * 5 = 15.

 Method
Interface Description
Internal Data Structures
Comments/Limitations

operate
Parameters: x[] - the operands

Returns: x[0] * x[1]

Overrides: operate in class Operator
None
None

Table 4:23 Summary of Class MultiplicationOperator

2.5.25 Class NegationOperator

This represents the binary operator - in an arithmetic equation; as in -(3) = -3.

Method
Interface Description
Internal Data Structures
Comments/Limitations

operate
Parameters: x[] - the operands

Returns: -x[0]

Overrides: operate in class Operator
None
None

Table 4:24 Summary of Class NegationOperator

2.5.26 Class Operator

Class representing the concept of an operator in an equation. For example, in X + 3 = Y X, 3 and Y are operands representing values whereas + and = are operators representing actions to be performed on the operands.

2.5.26.1 Operator.operate

Abstact method that all operators must implement. This represents the operator acting upon a series of operands.

Method
Interface Description
Internal Data Structures
Comments/Limitations

isHigherPrecedence
Parameters: o - an operator to be compared to this one

Returns: true if this operator is of higher precedence
None
None

isLowerPrecedence
Parameters: o - an operator to be compared to this one

Returns: true if this operator is of lower precedence
None
None

operate
Returns: the new operand produced by the operation
None
None

toString

Returns: the token for the current operator

Overrides: toString in class java.lang.Object
None
None

Table 4:25 Summary of Class Operator

2.5.27 Class OperatorTable

Much like GroupingSymbolTable this call serves as a holder for a set of other objects and acts as an interface to allow use of them. In this case the objects are Operators.

The most common usage of OperatorTable is ArithmeticOperatorTable.

2.5.27.1 OperatorTable.add

Adds an Operator to the table. If there is not room in the table for the symbol then (in the fashion of Vector) the capacity is doubled thereby making space.

2.5.27.2 OperatorTable.isAnOperator

Identifies String token as being an {@ Operator} in the table or not based on the context given by preceededByAnOperand.

2.5.27.3 OperatorTable.operatorFor

Identifies String token and returns the appropriate Operator. If token is not in the table then a NotATableElementExcepetion will be thrown (once I get that running.)

Method
Interface Description
Internal Data Structures
Comments/Limitations

add
Parameters:

o - symbol to be added
None
None

getTokens
Returns: a String array containing the tokens for the Operators in the table.
None
None

isAnOperator
Parameters:

token - String to be identified

Returns: true if token is in the table
None
None

operatorFor

Parameters:

token - String to be identified

Returns: the Operator for token.
None
None

Table 4:26 Summary of Class OperatorTable

2.5.28 Class ParserTest

This is a driver program to test the VALIIParser class.

2.5.28.1 ParserTest.movementRequested

Required for the implementation of MovementRequestListener. All that this does is dump the nature and arguments of e to java.lang.System.out.

Method
Interface Description
Internal Data Structures
Comments/Limitations

init

Overrides: init in class java.applet.Applet
None
None

main
None
None
None

movementRequested

Specified by: movementRequested in interface MovementRequestListener
None
None

Table 4:27 Summary of Class ParserTest

2.5.29 Class PostfixExpression

Represents a postfix equation. Equations are commonly of one of three types: infix, postfix, or prefix. The different types have to do with the placement of the operators in relation to the operands. In infix, X + Y, the operator + is in between the operands that it operates on X and Y. In prefix, + X Y, the operator + precedes the operands X and Y. In postfix, which this class represents, in X Y + the operator + postcedes the operators X and Y. So, + X Y (prefix) is the same as X + Y (infix) is the same as X Y + (postfix).

Postfix notation, unlike infix does not use any grouping symbols. Any equation may be represented because also unlike infix notation there is no order of operations; an operation is preformed when it is reached.

For more information on postfix equations, specifically how to solve them, see the documentation for the solution() method.

2.5.29.1 PostfixExpression.setEquation

This method sets the content of the expression. The algorithm used to translate an infix expression (which the ExpressionElementStack infixExpression represents) to a postfix one is this: (for an explanation of the difference between infix and postfix see the introduction to this class.)

· input stack SI which is a stack of ExpressionElements representing an infix equation

· create a new ExpressionElementStack SP representing the new postfix expression.

· Create a new ExpressionElementStack SO to hold operators temporarily

· while SI is not empty

· if the top of SI is an operator

· while SO is not empty and the top of SO is of equal or higher precedence than the top of SI

· pop SO and place the operator on SP

· pop SI and place the operator on SO

· else if the top of SI is a grouping symbol

· if the top of SI is an opening symbol

· pop SI and push the grouping symbol on SO

· else

· while SO is not empty and the top of SO is not the closing symbol for the top of SI

· pop SO and place the operator on SP

· pop SI and throw away the closing symbol

· else

· pop SI and place the variable or value in SP

· while SO is not empty

· pop SO and push the operator on SP

SP now contains the expression elements in the proper order for a postfix version of SI

For information on how an infix expression stack is generated see ArithmeticEquation.ArithmeticEquation(java.lang.String).
For information about how a postfix expression is solved by a computer see the solution() method of this class.

2.5.29.2 PostfixExpression.solution

This method returns the solution for the equation. The method that it used to compute the solution is this:
· input the expression (in this case, the expression is an Enumeration of ExpressionElementStack expression;) called SI

· begin a new temporary ExpressionElementStack to hold the work on the solution; called SO

· while the input stack (SI) has more elements

· if the top of SI is a Variable

· pop SI

· find the value for the variable

· push that value on SO

· else if the top of SI is a Integer

· pop SI

· push that value on SO

· else if the top of SI is an Operator

· pop SI

· pop SO enough times to get the number of operands needed to allow the operator taken off of SI to process

· operate on the operands popped

· push the solution on SO

Once this code is through processing then SO should contain a single value that is equal to the solution to the expression. If there is more than one value or if at any time an attempt is made to pop an empty stack then there was an error in the format of the equation.

The function currently returns 0 in the case of an error though soon it will throw an InvalidExpressionException.

Method
Interface Description
Internal Data Structures
Comments/Limitations

infixEquation

Returns: a string representing the infix form of the postfix equation
None
None

setEquation
Parameters:

infixExpression - stack representing an infix expression
None
None

solution
Specified by: solution in interface Equation

Returns: the integer solution to the postfix expression
None
None

toString

Specified by: toString in interface Equation

Returns: a string representing the infix form of the postfix equation

Overrides: toString in class java.lang.Object
None
None

Table 4:28 Summary of Class PostfixExpression

2.5.30 Class SineOperator

This represents the operator sin in an arithmetic equation. It returns the trigonometric sine.

 Method
Interface Description
Internal Data Structures
Comments/Limitations

operate
Parameters:

x[] - the operands in degrees

Returns: (int)Math.sin(x[0])

Overrides: operate in class Operator
None
None

Table 4:29 Summary of Class SineOperator

2.5.31 Class SubtractionOperator

This represents the operator - in an arithmetic equation; as in 3 - 5 = -2.

 Method
Interface Description
Internal Data Structures
Comments/Limitations

operate
Parameters:

x[] - the operands

Returns: x[0] - x[1]

Overrides: operate in class Operator
None
None

Table 4:30 Summary of Class SubtractionOperator

2.5.32 Class TokenizerTest

This is a driver program to test the AdaptedStringTokenizer class.

Method
Interface Description
Internal Data Structures
Comments/Limitations

main
None
None
None

Table 4:31 Summary of Class TokenizerTest

2.5.33 Class VALIIParser

This class is the culmination of all of these other classes. It is an extension of TextArea and when the processProgram() method is called the contents of the TextArea are processed and events are thrown to any registered listeners.

2.5.33.1 VALIIParser.addMovementRequestListener

Adds a listener to the events generated by processProgram().

2.5.33.2 VALIIParser.clear

Clears the contents of the text box.

2.5.33.3 VALIIParser.processProgram

Very simply this method does the processing of the text and generates the appropriate events. The algorithm at this point is extremely simple:

The recognized keywords are:

· rotate

· moveto

· reset

· toggleaxis

· pickup

· release

· clawchange

All that his function is this:
· tokenize the entire program using StringTokenizer with '\n' as the delimiter thereby processing the program line by line

· while there are strings remaining in the tokenizer

· remove whitespace from the beginning and end of the string

· change the string to lowercase

· check to see if the string begins with any of the keywords

· if the string begins with one of the keywords

· intialize the appropriate event with the remainder of the string other than the keyword

· throw the event; that is send it to movementRequested in the registered listener (which may in fact be more than one listener through the use of MovementRequestMulticaster.

· otherwise print an error message to System#out (this will become a throw of anInvalidProgramElement

The method of the processing makes it so that each line of the program is one command (tokenizing according to '\n') and it is case insensitive (calling String#toLowercase before checking for any keywords.

2.5.33.4 VALIIParser.removeMovementRequestListener

Removes a listener to the events generated by processProgram().

Method
Interface Description
Internal Data Structures
Comments/Limitations

addMovementRequestListener
Parameters:

l - a listener
None
None

clear
None
None
None

processProgram
None
None
None

removeMovementRequestListener
Parameters:

l - a listener
None
None

Table 4:32 Summary of Class VALIIParser

2.5.34 Class Variable

The Variable class allows the user to represent a mathematical variable. A variable has a name and a value. For example, X + 3 * X = Y is a mathematical equation. The characters X and Y are mathematical variables that represent numeric values. Similarly, density = mass / volume is a mathematical equation with the variables density, mass and volume. Because in the equation Z = (X + 3) * X the two X's are not in fact different variables, but represent different references to the same value, each Variable object does not maintain its own value. Rather there is a static member VariableDereferencer d that maintains a list of all variable names and maintains a value for each.

2.5.34.1 Variable.hashCode

Returns the hash code from String for the name of the current Variable.

2.5.34.2 Variable.isFalse

A Variable operates along the same lines, as an integer variable in C. If the value is 0 then it is considered false, otherwise it is considered true.

2.5.34.3 Variable.isTrue

A Variable operates along the same lines, as an integer variable in C. If the value is 0 then it is considered false, otherwise it is considered true.

2.5.34.4 Variable.setDereferencer

This sets the object that is responsible for storing the values of the variables and returning them. VariableDereferencer is an interface and any object may implement it. By default the variable dereferencer is set to be a VariableTable.

2.5.34.5 Variable.setDereferencer

This sets the object that is responsible for storing the values of the variables and returning them. VariableDereferencer is an interface and any object may implement it.

2.5.34.6 Variable.setValue

Assigns a value to the reference in the VariableDereferencer with the same name as the current name. If the name is not found in the dereferencer then a new VariableReference is added and new value assigned.

2.5.34.7 Variable.toString

Returns a string containing the name of the variable followed by its value.

2.5.34.8 Variable.valueOf

Returns the current value of the variable. If the variable has no name or if there is no dereferencer set then it returns 0. This will eventually be replaced with a VariableNotFoundException.

Method
Interface Description
Internal Data Structures
Comments/Limitations

dereferencer
Returns: the current VariableDereferencer
None
None

hashCode
Returns: interger useful for implementing a hash table

Overrides: hashCode in class java.lang.Object

See Also: String.hashCode()
None
None

isFalse
Returns: the inverse of the boolean representation of the current value
None
None

isTrue
Returns: the boolean representation of the current value
None
None

setDereferencer
None
None
None

setDereferencer
Parameters:

d – class implementing VariableDereferencer to store variable values
None
None

setValue
Parameters:

i - value to be assigned
None
None

toString
Returns: String of the form: name: [value]

Overrides: toString in class java.lang.Object
None
None

valueOf
None
None
None

Table 4:33 Summary of Class Variable

2.5.35 Interface VariableDereferencer

Interface implemented by any object that wishes to be able to store variable values. This class may work in conjunction with Variable to maintain a single list of all the variable names and values.

The basic concept is that the implementing class keeps a list of variable names and associated values and gives the user access to those values.

2.5.35.1 VariableDereferencer.add

Add a variable with name name to the dereferencer. The implementer should be wary of having multiple variables with the same name because of potential lost data.

2.5.35.2 VariableDereferencer.assign

Should allow the user to assign the value of value to the variable of name.
2.5.35.3 VariableDereferencer.demark

Remove all variables added to the table since the last mark().

2.5.35.4 VariableDereferencer.dereference

The class implementing this should be able to return the value associated with name.

2.5.35.5 VariableDereferencer.mark

Adds a mark to the table. If the table is later demarked all variables added since the last mark should be removed.

Method
Interface Description
Internal Data Structures
Comments/Limitations

add
Parameters:

name - variable to add
None
None

assign
Parameters:

name - variable to assign to

value - value to be assigned to name
None
None

demark
None
None
None

dereference
Parameters:

name - variable to return the value of

exists
Parameters:

s - variable name to check for existence

Returns: whether a variable with name s is in the dereferencer
None
None

mark
None
None
None

Table 4:34 Summary of Interface VariableDereferencer

2.5.36 Class VariableReference

The primary purpose of this class is to serve as an entry in VariableTable.

2.5.37 Class VariableTable

The VariableTable class acts in conjunction with the Variable class. For an introduction as to the nature of this relationship see the introduction to Variable.

2.5.37.1 VariableTable.add

If s isn't already in the table, a new VariableReference with a name s and value 0 is added.

2.5.37.2 VariableTable.add

Adds a VariableReference to the table. If there is not room in the table for the symbol then (in the fashion of Vector) the capacity is doubled thereby making space.

2.5.37.3 VariableTable.assign

Assigns value to the reference of name. If there is no reference of name in the table then a new one is added with a value of value.

2.5.37.4 VariableTable.demark

Removes all variables from the table added since the last mark(). If there are no marks then the table is cleared.

2.5.37.5 VariableTable.dereference

Returns the value for the variable with name of name. If name is not in the table then a NotATableElementExcepetion will be thrown.

2.5.37.6 VariableTable.exists

Same as isInTable(java.lang.String)

2.5.37.7 Variable.isInTable

Checks to see if there is a variable with name s in the table

2.5.37.8 Variable.mark

Places a mark in the table. Marking is a process that allows for the localization of variables. When a point in the processing is reached where you wish to localize variables place a mark in the table and then when the table is demarked all variables put in since the mark are removed from the table.

Method
Interface Description
Internal Data Structures
Comments/Limitations

add
Specified by: add in interface VariableDereferencer

Parameters:

s - name of a variable to add
None
None

add
Parameters:

o - reference to be added
None
None

assign
Specified by: assign in interface VariableDereferencer

Parameters:

name - the name of the variable

value - the value to set name equal to
None
None

demark
Specified by: demark in interface VariableDereferencer
None
None

dereference
Specified by: dereference in interface VariableDereferencer

Parameters:

name - variable name to derefernce
None
None

exists
Specified by: exists in interface VariableDereferencer

Returns: the same as isInTable(java.lang.String)
None
None

isInTable
Returns: true if s is in the table
None
None

mark
Specified by: mark in interface VariableDereferencer
None
None

Table 4:35 Summary of Class VariableTable

2.5.38 Class VariableTest

This is a driver program to test the Variable class.

Method
Interface Description
Internal Data Structures
Comments/Limitations

main
None
None
None

Table 4:36 Summary of Class VariableTest

3 Requirements Cross-Reference

Animate the robotic arm
Not implemented due to time constraints

Create a wire-frame factory floor
Works

Create database
Not implemented due to time constraints

Create item pallete
Not implemented due to time constraints

D-H representation for kinematics
Works

Drag and drop objects onto floor
Not implemented due to time constraints

Graphical User Interface
Works

Grasping claw
Not implemented due to time constraints

Inverse kinematics
Not implemented due to time constraints

Parser moves robot arm
Works

Parser resets screen
Works

Parser toggles axis of each joint
Works

Platform independence
Works on every platform that supports Java3D runs on

Robot conforms to PUMA specifications
Works

Use the robotic arm to pick up an item
Not implemented due to time constraints

Web-based
Works with correctly installed Java3D plugin

Table 5:1 Requirements Cross-Reference
Testing

3.1 Scope

This section describes in detail the test design for this program. It outlines the testing procedures, the types of tests done, and the results of the testing.

3.1.1 Purpose

The purpose of this section is to describe the errors uncovered during the testing. The errors found in the code are not errors in syntax or logic errors that cause the code not to execute but are errors in the functionality of the code.

3.1.2 Target Audience and Usage

This summary is for use by software engineers but most particularly Dr. Srini Ramaswamy who will be giving us our grade for this document.

3.2 Test Plan

3.2.1 Test Phases and Builds

The VALIIParser of the program was tested individually before integration. The robotic arm and floor were also tested before integration, but it was only possible to test thoroughly after the program was integrated.

3.2.2 Schedule

Serious testing of all code began in the twelfth week of the semester continuing into the fifteenth. The parsing code and robotic arm simulator were tested as a integrated whole in the fourteenth week.

3.2.3 Overhead Software

In testing the parsing part of the program, a series of test classes were used that instantiate one or more of the parser classes and feed a series of test data through it. The output was written to System.out where the results were checked.

3.2.4 Test Environment and Resources

Testing was done on the code as a applet and as a application. The code was tested on various machines in the CSc department. We can access it and run it on csc.tntech.edu computers on campus on the network.

3.2.5 Risk, Responsibilities, and Contingencies

Risks include group members leaving the group due to other commitments and time constraints and inability to learn Java3D. Any of the group members could have picked up the project if it were necessary, but if we hadn’t been able to figure out Java3D it would have been detrimental to the project. If the program does not work properly or is not completed to Dr. Ramaswamy’s satisfaction our grades are also in serious jeopardy.

3.3 Test Descriptions and Overview

3.3.1 Types of tests

3.3.1.1 Unit Tests

In the graphics section, most modules were simply sequential, so the testing entailed making sure that they were called and processed accordingly, and this was done by placing System.out.println(“message”) commands at various points in the code. Running the boundary conditions as well as values on either side of them tested the few decision structures. In the parsing section, most testing was done using test classes as discussed in section 6.2.3.

3.3.1.2 Integration Tests

Integration tests were performed by providing every imaginable input to the program. All manner of window operations were attempted (resizing, minimizing, etc.), and many permutations of commands were tried. The kinematics were checked by adding Axis objects to each joint and verifying the behavior by comparing it with our sources. Also, System.out.println() was used to print values passed from one unit to another. We used a bottom-up approach, combining a few small, fully functional modules at a time.

3.3.1.3 Regression Testing

As changes were made to the code, that particular module underwent unit testing again and then integration tests were repeated once the altered module was re-combined into the application.

3.3.1.4 Recovery Testing

Invalid commands were input and the applications response was noted. This only applied to the parsing section because the commands issued to the robot are very well defined and internally controlled. It is inconceivable that any invalid data would be sent from the parser to the robot.

3.3.1.5 Stress Testing

An applicable stress test was pushing the “Parse” button really fast. A second test included entering an extremely long program (various lines between 100 and 1000) repeatedly and testing the results. Also, the repeated submission of long programs pointed out areas where our program was using up more memory than the systems garbage collection could keep up with.

3.3.1.6 Performance Testing

The primary method of performance testing was to submit very large (1500 lines or greater) programs and monitor system resources.

3.3.1.7 Validation Testing

The list of requirements from our SRS were considered and tested.

3.3.2 Test Environment

3.3.2.1 Special Tools or Techniques

We used the System.out.println() command to perform much of the unit testing by making sure that the appropriate methods were called and to check intermediate values, making sure that appropriate values were being passed.

3.3.2.2 Overhead Software Description

The overhead software used consisted of a series of classes used to test different parts of the parser. These are listed among the parser classes (section 4.2) and denoted by the suffix “Test” in the class name.

3.4 Module and Integration Test Procedure

3.4.1 Order of Integration

3.4.1.1 Purpose

3.4.1.2 Overall Test Plan

3.4.2 Unit Tests

Description
Design
Software
Expected
Observed
Analysis

Constructor tests
Place println statements in all constructors to ensure they are called.
System.out.println()
All constructors called properly.
All constructors called properly.
Correct execution

Parameter tests
Place println statements in all methods indicating the values of parameters passed.
System.out.println()
Proper values were passed.
Proper values were passed.
Correct execution

PUMA-like Appearance
Look at geometry.
None
Geometry is consistent with the appearance of a PUMA robot.
Geometry is consistent.
Correct execution

Bounds on motion
Tell the robot to move a number of degrees that exceeds the upper and lower limits of it’s range.
None
Robot stops at whichever boundary is exceeded.
All joints stop at their maximum or minimum angle.
Correct execution

Joints oriented correctly
Add graphical representation of coordinate frame to each joint and compare with researched diagram.
None
Joint coordinate frames conform to D-H notation.
Joint coordinate frames conform to D-H notation.
Correct execution

Collision of robot geometry with self
Move the robot so that some of it’s geometry collides with another part.
None
I expected the geometry to not stop upon with collision with other parts. Ideally this would not happen.
Geometry merged with any object it collided with.
This error can be fixed by adding a behavior triggered by a Collision event, but the solution is currently beyond my knowledge of Java3D.

Collision of robot with floor
Move the robot until the claw breaks the plane of the floor.
None
I expected that the claw would pass unimpeded through the floor.
The claw passed through the floor.
This error can be corrected with the addition of sensors and behaviors and will be in future versions.

Processing rotate command
Send a rotate command to the robot.
Method inside the robot class that throws MovementRequestEvents.
Movement will occur as specified in event.
Movement occurred as specified in event.
Correct execution

Processing reset command
Send a reset command to the robot.
Method inside the robot class that throws MovementRequestEvents.
Robot will return to initial position.
Robot returned to initial position.
Correct execution

Processing toggleaxis command
Sent a toggleaxis command to the robot.
Method inside the robot class that throws MovementRequestEvents.
Robot will turn on or off whatever axis is specified.
Robot turned on or off whatever axis was specified.
Correct execution

Axis of rotation
Rotate each joint with the axis enabled.
None
Each joint should rotate about the Z-axis of its coordinate frame, as specified by D-H.
Each joint rotates about the Z-axis of its coordinate frame.
Correct execution

Table 6:1 Unit Testing for Robotic Arm

Description
Design
Software
Expected
Observed
Analysis

ArithmeticEquation

Constructor tests
Place println statements in all constructors to ensure they are called.
System.out.println()
All constructors called properly.
All constructors called properly.
Correct execution

Parameter tests
Place println statements in all methods indicating the values of parameters passed.
System.out.println()
Proper values were passed.
Proper values were passed.
Correct execution

Single digit test
Construct a new object using a single digit string as the operand
Class Integer
A new equation will be created with a value equal to the digit used to create it
The proper value is returned from the valueOf() method for the equation
Correct execution

Multiple digit test
Construct a new object using a multiple digit string as the operand
Class Integer
A new equation will be created with a value equal to the digits used to create it
The proper value is returned from the valueOf() method for the equation
Correct execution

Addition operator test
Created a new equation with a string representing two values separated by the operator for addition
Class AdditionOperator
A new addition equation to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Subtraction operator test
Created a new equation with a string representing two values separated by the operator for subtraction
Class SubtractionOperator
A new subtracition equation to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Multiplication operator test
Created a new equation with a string representing two values separated by the operator for multiplication
Class MultiplicationOperator
A new multiplication equation to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Division operator test

(numerator > divisor)
Created a new equation with a string representing two values separated by the operator for division
Class DivisionOperator
A new division equation to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Division operator test

(numerator > divisor)
Created a new equation with a string representing two values separated by the operator for division
Class DivisionOperator
A new division equation to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Division operator test

(divisor = 0)
Created a new equation with a string representing two values separated by the operator for division
Class DivisionOperator
A new division equation to be created
DivideByZeroException thrown
Correct execution

Negation operator test

Created a new equation with a string representing two values separated by the operator for negation
Class NegationOperator
A new negation equation to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Multiple operators test (same operator)
Created a new equation with a string of values linked by the same operator
Class Integer

Class Operator
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation
Correct execution

Multiple operators test (different operators; same precedence)
Created a new equation with a string of values linked by different operators with the same precedence
Class Integer

Class Operator
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation for addition and subtraction equations. When there is a division operator following a series of multiplications the answers are incorrect
There is an error in the solving of the execution of the division operator in the chain of precedence

Multiple operators test (different operators; different precedence)
Created a new equation with a string of values linked by different operators with different precedences
Class Integer

Class Operator
The appropriate equations to be created
All test perform correctly and the order of operations is followed except for those with division at the end of the equation
There is an error in the solving of the execution of the division operator in the chain of precedence

Whitespace tests
Created a new equation with varying sets of whitespace characters separating the elements
Class Integer

Class Operator

Class AdaptedStringTokenizer
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation; whitespace having been ignored
Correct execution

(respecting the already discovered errors in the division operator)

Grouping symbol tests (single level)
Created a new equation which included grouping symbols; there was no nesting of symbols
Class Integer

Class Operator

Class GroupingSymbol
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation; grouping symbols have been respected
Correct execution

(respecting the already discovered errors in the division operator)

Grouping symbol tests (multiple levels)
Created a new equation which included grouping symbols; there was nesting of symbols
Class Integer

Class Operator

Class GroupingSymbol
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation; grouping symbols have been respected
Correct execution

(respecting the already discovered errors in the division operator)

Variable test (single character)
Created a set of variables each with a single character name and put them in an equation
Class Integer

Class Operator

Class Variable
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation; variables have been dereferenced
Correct execution

(respecting the already discovered errors in the division operator)

Variable test (multiple character)
Created a set of variables each with multiple length names and put them in an equation
Class Integer

Class Operator

Class Variable
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation; variables have been dereferenced
Correct execution

(respecting the already discovered errors in the division operator)

Combo equations
Equations created including elements of all the other tests; grouping symbols, variables, all operators, different orders of operations
Class Integer

Class Operator

Class Variable

Class GroupingSymbol
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation; variables have been dereferenced
Correct execution

(respecting the already discovered errors in the division operator)

Multiple length operator test
Operator sine with symbol “sin” created and put in an equation
Class Integer

Class SineOperator
The appropriate equations to be created
The proper value is returned from the valueOf() method for the equation;
Correct execution

Grouping Symbol Tests

Constructor test (Class GroupingSymbol)
Outputted the contents of the grouping symbol once it was created
None
The proper information to come out
The proper information came out
Correct execution

Constructor test (Class GroupingSymbolTable)
Outputted the contents of the grouping symbol table once it was created
None
The proper information to come out
The proper information came out
Correct execution

Closes test
Checked pairs of grouping symbols against each other
None
That they recognize that they matched or not
They recognize correctly
Correct execution

Balanced test
Checked equations that were and weren’t balanced
None
The isBalanced() function should recognize if they are balanced or not
It recognizes correctly
Correct execution

Parser Test

Constructor tests
Place println statements in all constructors to ensure they are called.
System.out.println()
All constructors called properly.
All constructors called properly.
Correct execution

Override test
Checked non-overwriten methods in TextArea to see if they still perform as they ought to
Class TextArea
Methods perform as specified for TextArea.
Methods perform as specified for TextArea.
Correct execution

Resize test
Resize the size of the applet window
None
The size of the teat area should resize appropriately
The size of the teat area resizes appropriately
Correct execution

Line parsing
Outputted line by line the strings in the program
Class StringTokenizer
Each line should be separated into a string
Each line is separated into a different string
Correct execution

Keyword recognition
Checked to see if lines could be recognized as beginning with a keyword
Class String
Beginning of a line should be recognizable by a keyword
Lines are of different cases and the function being used is case sensitive
Switched to case insensitive method

Constructor call
Sent line with keyword removed to the constructor for the event requested by that keyword
Class MovementRequestEvent
Should construct correctly
Constructs correctly
Correct execution

Event throwing test
Created an event thrower and registered a listener with it. The behavior of the listener is to output the nature of an event received by it
Class MovementEventListener
Events should throw correctly
Events are received correctly with the appropriate arguments
Correct execution

Tokenizer Test

Constructor tests
Place println statements in all constructors to ensure they are called.
System.out.println()
All constructors called properly.
All constructors called properly.
Correct execution

Default tokenizer test
The behavior of StringTokenizer was examined; if it was possible to identify multiple chacacter tokens
Class StringTokenizer
All characters to delimit by in StringTokenizer must be one character
All characters to delimit by in StringTokenizer must be one character
Correct execution

New tokeizer test
Override of StringTokenizer created allowing construction with a string array
None
Multiple character length delimiters may be used
Multiple character length delimiters function correctly
Correct execution

Substring test
Check the behavior when one token is a substring of another
None
Longest possible delimiter should be recognized
Longest possible delimiter is recognized
Correct execution

Return tokens flag test
Alternate settings of returns flag set
None
When return tokens is set delimiters should be returned as tokens when not they should be ignored
When return tokens is set delimiters are returned as tokens when not they are ignored
Correct execution

Return whitespace flag test
Alternate settings of return whitespace
None
When return whitespace is set whitespace; whitespace is ignored if not whitespace is considered a delimiter
When return whitespace is set whitespace; whitespace is ignored if not whitespace is considered a delimiter
Correct execution

Count tokens test
Call countTokens()
None
Should return the number of tokens remaining in the string
Returns 0
This is not overridden from String Tokenizer which is the actual method being called; overriding it would fix it

Variable Test

Constructor tests
Place println statements in all constructors to ensure they are called.
System.out.println()
All constructors called properly.
All constructors called properly.
Correct execution

Instantiation test (direct)
Variable reference manually added to the variable dereferencer
Class VariableDereferncer
Variable will be accessible through the table
Variable is accessible through the table
Correct execution

Instantiation test (indirect)
New variable created with name and value
None
Variable will be accessible through the table
Variable is accessible through the table
Correct execution

Multiple reference test
Several variables created with the same internal name (different externals)
None
All variables with the same name should affect the same value
All variables with the same name affect the same value
Correct execution

Default value test
Variable created without a value
None
When a variable is created without a value it should have a default value of 0 set
When a variable is created without a value it has a default value of 0 set
Correct execution

Mark/demark test
Defererencer was marked, variables added and changed then demarked
Class VariableDereferncer
When the dereferencer is marked the next time that it is demarked all variables added since the mark should be removed
After it was demarked all variables added since last mark were removed; values of non-removed variables were unaffected
Correct execution

Table 6:2 Unit Testing for ValIIParser
3.4.3 Integration Tests

Description
Design
Software
Expected
Observed
Analysis

Rotate with 0 parameter test
Submit program:

“rotate”.
None
Robot will do nothing.
Robot did nothing.
Correct execution

Rotate with 1 parameter test
Submit program:

“rotate 10”
None
Robot will rotate ten degrees about joint 1.
Robot rotated ten degrees about joint 1.
Correct execution

Rotate with 2 parameter test
Submit program:

“rotate 10, 10”
None
Robot will rotate ten degrees about joints 1..2.
Robot rotate ten degrees about joints 1..2.
Correct execution

Rotate with 3 parameter test
Submit program:

“rotate 10, 10, 10”
None
Robot will rotate ten degrees about joints 1..3.
Robot rotate ten degrees about joints 1..3.
Correct execution

Rotate with 4 parameter test
Submit program:

“rotate 10, 10, 10, 10”
None
Robot will rotate ten degrees about joints 1..4.
Robot rotate ten degrees about joints 1..4.
Correct execution

Rotate with 5 parameter test
Submit program:

“rotate 10, 10, 10, 10, 10”
None
Robot will rotate ten degrees about joints 1..5.
Robot rotate ten degrees about joints 1..5.
Correct execution

Toggleaxis test
Use the toggleaxis command twice for each axis.
None
Each joint’s coordinate frame will be shown with the first command and removed with second.
Each joint’s coordinate frame was shown with first command and removed with second.
Correct execution

Reset test
Issue the reset command.
None
Robot will return to initial position.
Robot returned to initial position.
Correct execution

Rotate with 6 parameter test
Submit program:

“rotate 10, 10, 10, 10, 10, 10”
None
Robot will rotate ten degrees about joints 1..6.
Robot rotate ten degrees about joints 1..6.
Correct execution

Applet resized
Use mouse to resize applet
None
Applet will resize appropriately.
Applet resized. The graphic portion scaled horizontally but not vertically. At some resizings, the leading horizontal edge of the floor sometimes disappeared. A few times the graphics were garbled after resizing but could be fixed by another resize.
The differences in resizing along the two axis is inherent in Sun’s MainFrame class. The loss of the leading edge of the floor is a mysterious occurrence that I attribute to the difference in resizing horizontally and vertically. The garbling of the graphics is probably a hardware or operating system problem.

Applet dies respectfully
Click “x” in upper right of applet frame.
None
Applet will end execution and clean up its resources.
Applet ended execution and cleaned up its resources.
Correct Execution

Table 6:1 Integration Testing
3.5 Overall Summary of Test Results

3.5.1 Module and Integration Test Results Summary

We found that the tests of all units and of the integrated program yielded few errors. These errors and measures taken to correct them are noted in the tables throughout section 6.4.2 and section 6.4.3.

3.5.2 Stress Test Results Summary

We found that when a long program (> 500 lines) is submitted three times, on the third the computer slows considerably. Often the applet would crash but sometimes most (98%) of CPU time would be transferred to Window’s SystemIdle process. We concluded that our program was using to much memory. To correct this, it was found that when a joint added its axis geometry, a new Axis object was created. This memory drain was fixed by instantiating each joint’s Axis object globally so only one object was used instead of continually disposing one and creating another.

3.5.3 Performance Test Results Summary

We found that performance was satisfactory for all but the largest programs, and once the code in the Joint class was altered (See section 6.5.2) the performance for large programs increased exponentially.

3.5.4 Usability Results Summary

Features that would be helpful if implemented for a user include a Help Menu where commands and parameters for the robotic arm are listed along with other instructions on how to use the robot.

4 Appendix

4.1 Description of Member Responsibilities

The members of the Java3D Robotic Arm Simulator design team and their responsibilities for the entire semester are as follows:

Danyel Bruggink: Maintained the project’s webpage, was responsible for docuementation, and was a beta tester.

Will Holcomb: Wrote the parser.

Andy Trent: Wrote the robot arm. Designing the arm included intensive study of PUMA robots and kinematics.

Responsibility
Danyel Bruggink
Will Holcomb
Andy Trent

Attend Group Meetings

(% of all meetings)
100%
100%
100%

Coding Parser
0%
100%
0%

Coding Robot
0%
0%
100%

Final Design Documentation
65%
10%
25%

Presentation One (% of total)
33.3333333%
33.3333333%
33.3333333%

Presentation Two (% of total)
33.3333333%
33.3333333%
33.3333333%

Project Proposal
85%
5%
10%

Project Website
95%
2.5%
2.5%

Software Requirements Specification (SRS)
5%
80%
15%

Testing
20%
30%
50%

Table 7:1 Member Responsibilities

4.2 Robotic Arm Source Code

4.2.1 Source for Class Axis

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.geometry.Cylinder;

public class Axis {

/*Written by Andy Trent

Input:
none

Output:
none

Variables:
AxisBG:
The BranchGroup that roots this graph

Red:
A red appearance

Blue:
A blue appearance

Green:
A green appearance

This class is something I can add just about anywhere in the program that will let me

see the coordinate frame for a particular TransformGroup. It helps me debug things,

and could be used in showing people how this particular represetation works. The set

of axis (x, y, z) are represented by red, blue, and green respectively. I picked that

order because it was easy to remember...xyz = RGB....*/

private BranchGroup AxisBG = new BranchGroup();

private Appearance Red = new Appearance();

private Appearance Blue = new Appearance();

private Appearance Green = new Appearance();

public Axis() {

/*Written by Andy Trent

Input: none

Ouput:
none

Variables:
X:
This cylinder is the geometry for the X axis

Y:
This is the geometry for Y axis

Z:
The geometry for Z axis

XT:
This is the Transform3D which correctly orients the X cylinder

YT:
Orients the Y cylinder

ZT:
Orients the Z cylinder

XTG:
The TransformGroup XT is placed in

YTG:
The TransformGroup YT is placed in

ZTG:
The TransformGroup ZT is placed in

This just sets up a branchgraph that will have one cylinder of appropriate color

pointing down each axis...*/

Red.setColoringAttributes(new ColoringAttributes(1.0f, 0f, .2f, 100));

Blue.setColoringAttributes(new ColoringAttributes(0f, 0f, 1.0f, 100));

Green.setColoringAttributes(new ColoringAttributes(0f, 1.0f, 0f, 100));

AxisBG.setCapability(AxisBG.ALLOW_DETACH);

Cylinder X = new Cylinder(.01f, 1.2f, Red);

Transform3D XT = new Transform3D();

XT.rotZ(-(float)(Math.PI * .5)); //flip it -90 deg about Z

XT.setTranslation(new Vector3f(.6f, 0f, 0f));

TransformGroup XTG = new TransformGroup(XT);

XTG.addChild(X);

AxisBG.addChild(XTG);

Cylinder Y = new Cylinder(.01f, 1.2f, Green);

Transform3D YT = new Transform3D();
 //Cylinders are along the Y axis by default

 //so this one doesn't need rotating

YT.setTranslation(new Vector3f(0f, .6f, 0f));

TransformGroup YTG = new TransformGroup(YT);

YTG.addChild(Y);

AxisBG.addChild(YTG);

Cylinder Z = new Cylinder(.01f, 1.2f, Blue);

Transform3D ZT = new Transform3D();

ZT.rotX((float)(Math.PI * .5));

 //rotate 90 deg about X

ZT.setTranslation(new Vector3f(0f, 0f, .6f));

TransformGroup ZTG = new TransformGroup(ZT);

ZTG.addChild(Z);

AxisBG.addChild(ZTG);

}

public BranchGroup getAxisBG() {

/*Written by Andy Trent

Output: BranchGroup AxisBG

This accessor returns the base of the graph*/

return AxisBG;

}

public void detachAxis() {

/*Written by Andy Trent

This method detaches this graph from whatever it is attached to. Enables the Axis object

and it's nifty cylinders to be "turned off."*/

AxisBG.detach();

}

}
Source for Class Block
import com.sun.j3d.utils.geometry.*;

import javax.media.j3d.*;

import javax.vecmath.*;

public class Block extends Box {

/*Written by Andy Trent

This is a fairly simple extension of the Box class in the j3d utility

package. All my extension does is allow me to make each side a different

color. This was kind of useful at one point so I used it but now I'm not

if I ever use that option. I still use the class though because everynow

and then it's nice to be able to see whether I'm looking at the top, bottom,

or a side of some part of the robot.*/

public Block() {

/*Written by Andy Trent

Input: none

Output: none

Variables: none

This does nothing but call the constructor for Box with default values*/

super(1.0f, 1.0f, 1.0f, GENERATE_NORMALS, null);

}

public Block(float xdim, float ydim, float zdim, Appearance ap) {

/*Written by Andy Trent

Input:
xdim:
x dimensions for the block

ydim:
y dimensions for the block

zdim:
z dimensions for the block

ap:

an Appearance object used to specify color.

Output: none

Variables: none

This calls the Box constructor with dimensions and an appearance, using

a default for the primitive flags field.*/

super(xdim, ydim, zdim, GENERATE_NORMALS, ap);

}

public Block(float xdim, float ydim, float zdim, int primflags,

Appearance ap) {

/*Written by Andy Trent

Input:
xdim:

x dimensions for the block

ydim:

y dimensions for the block

zdim:

z dimensions for the block

primflags:
integer with various bits set specifying attributes

of the geometry.

ap:

an Appearance object used to specify color.

Output: none

Variables: none

Once again, just a constructor. This one doesn't use any defaults though.*/

super(xdim, ydim, zdim, primflags, ap);

}

public void setAppearance(Appearance ap, int partId) {

/*Written by Andy Trent

Input:
ap:

an Appearance object used to specify color.

partId:
integer corresponding to TOP, BOTTOM, LEFT, RIGHT, FRONT, BACK

as defined in Box.

Output: none

Variables: none

This sets the color of the side noted by partId to the specified color*/

if ((partId >= FRONT) && (partId <= BOTTOM)) //if partId is member [1...6]

((Shape3D)((Group)getChild(0)).getChild(partId)).setAppearance(ap);

}

}
Source for Class Claw

import javax.media.j3d.*;

import javax.vecmath.*;

import java.lang.*;

import Block;

public class Claw {

/*Written by Andy Trent

|S|

|S|

|i|

|i|

|d|

|d| <- Diagram of what the sides and back of the claw are

|e|_____|e|

|
back |

Variables:
bx:

The x value of the back

by:

The y value of the back

bz:

The z value of the back

sx:

The x value of each side

sy:

The y value of each side

sz:

The z value of each side

ClawBase:

The BranchGroup rooting this graph

ClawBaseT:

The TransformGroup underneath the root to which

all geometry is attached

AttachPoint:
This is a TransformGroup that any carried object's

graph will be attached to.

This method is currently just the geometry of the end effector for the robot.

Eventually it will also contain methods for grasping and releasing objects

as well as any sensors are necesessary to do what it needs to do.*/

private float bx = .03f;
//back height

private float by = .11f;
//back length

private float bz = .015f;
//back width

private float sx = .03f;
//side height

private float sy = .015f;
//side thickness

private float sz = .09f;
//side length

private BranchGroup ClawBase = new BranchGroup();

private Transform3D ClawBaseT = new Transform3D();

public TransformGroup AttachPoint;

public Claw(Appearance Color1, Appearance Color2) {

/*Written by Andy Trent

Input: Color1, Color2 are both colors used later.

Output: none

Variables: ClawBack:
This is the geometry for the "back" in above diagram

TransToAttach:
This is a Transform3D from the origin of this objects'

geometry to the AttachPoint

ClawBaseTG:
This is the TransformGroup to the beginning of the claw

Side1T:

This is the transform to put Side1 in place

Side1TG:
This is the TransformGroup Side1T is placed in

Side1:

This is the geometry for that side

Side2T:

This is the transform to put Side2 in place

Side2TG:
This is the TransformGroup Side2T is placed in

Side2:

This is the geometry for that side

This constructor simply builds the graph for the geometry of the claw.*/

ClawBaseT.setTranslation(new Vector3f(0f, 0f, (float)(bz + .0)));

TransformGroup ClawBaseTG = new TransformGroup(ClawBaseT);

ClawBase.addChild(ClawBaseTG);

Block ClawBack = new Block(bx, by, bz, Color1);

ClawBaseTG.addChild(ClawBack);

Transform3D TransToAttach = new Transform3D();

TransToAttach.setTranslation(new Vector3f(0f, 0f, ((2*bz) + .02f)));

AttachPoint = new TransformGroup(TransToAttach);

ClawBaseTG.addChild(AttachPoint);

Transform3D Side1T = new Transform3D();

Side1T.setTranslation(new Vector3f(0f, by-sy, bz+sz));

TransformGroup Side1TG = new TransformGroup(Side1T);

Side1TG.setCapability(Side1TG.ALLOW_TRANSFORM_WRITE);

Block Side1 = new Block(sx, sy, sz, Color2);

Side1TG.addChild(Side1);

ClawBaseTG.addChild(Side1TG);

Transform3D Side2T = new Transform3D();

Side2T.setTranslation(new Vector3f(0f, -(by-sy), bz+sz));

TransformGroup Side2TG = new TransformGroup(Side2T);

Side2TG.setCapability(Side2TG.ALLOW_TRANSFORM_WRITE);

Block Side2 = new Block(sx, sy, sz, Color2);

Side2TG.addChild(Side2);

ClawBaseTG.addChild(Side2TG);

}

public BranchGroup getClawBG() {

/*Written by Andy Trent

Output: returns BranchGroup ClawBase

This is just an accessor method that returns the base of the claw graph.*/

return ClawBase;

}

}
Source for Class Factory Floor

import javax.media.j3d.*;

import javax.vecmath.*;

import java.lang.*;

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import Robot;

import Floor;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.Cylinder;

import com.sun.j3d.utils.geometry.Sphere;

public class FactoryFloor extends Panel {

/* Written by Andy Trent

 INPUTS: None

 OUTPUTS: None

 VARIABLES: One of type Robot named George. In the future, robots will be stored

in an array to which they can be added and deleted.

This class represents the floor of the factory -- a "blank slate"

in which the user can perform different factory operations.*/

/*private Robot RobotArray[] = new Robot();

public addRobot(string name) {

Robot temp = new Robot();

/*create temporary array with n+1 members, assign temp to n+1...

set old RobotArray equal to it/

}

*/

public Robot George;
//our one robot

public BranchGroup createSceneGraph() {

/* Written by Andy Trent

Inputs: none

Outputs: returns a BranchGroup that is the root of the entire scene's scene-graph

Variables:
objRoot:
BranchGroup that is the root of the scene-graph

baseTransG:
the TransformGroup that moves everything below the root

baseTrans:
the Transform3D set in baseTransG

floor:

the wire-frame floor

This method builds the scene graph for this scene and returns it to the

constructor it takes no arguments and returns the root node

of a branchgraph.*/

//create root of graph

BranchGroup objRoot = new BranchGroup();

//create transform to base

TransformGroup baseTransG = new TransformGroup();

baseTransG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

//add to root

objRoot.addChild(baseTransG);

//create transform to be applied to baseTransG

Transform3D baseTrans = new Transform3D();

baseTrans.setTranslation(new Vector3f(0f, -1f, 0f));

//set it as transform of baseTransG

baseTransG.setTransform(baseTrans);

George = new Robot(); //creates new robot and adds to scene

baseTransG.addChild(George.getRobotGraph());

Floor floor = new Floor(); // creates new Floor object and adds to scene

baseTransG.addChild(floor.getFloorGraph());

objRoot.compile();

return objRoot;

}

public FactoryFloor() {

/*Written by Andy Trent

This constructor takes no arguments and has no return value. It

prepares a canvas onto which the scene will be rendered and then renders

the scene. I'm not sure what a lot of this does, but the Java3D book says

to do it.*/

setLayout(new BorderLayout());

GraphicsConfiguration config = SimpleUniverse.getPreferredConfiguration();

Canvas3D c = new Canvas3D(config);

add("Center", c);

BranchGroup scene = createSceneGraph();

SimpleUniverse u = new SimpleUniverse(c);

u.getViewingPlatform().setNominalViewingTransform();

u.getViewer().getView().setFieldOfView(1.3f);

u.addBranchGraph(scene);

}

}

Source for Class Floor

import javax.media.j3d.*;

import javax.vecmath.*;

import java.lang.*;

public class Floor {

/*Written by Andy Trent

Input: none

Output: none

Variables: FloorBase: a BranchGroup that is the root for this objects scene-graph

This forms the floor of the factory. There is probably an easier way to do it, but

I haven't had to use this type of geometry enough to really know how to use

it well.*/

private BranchGroup FloorBase = new BranchGroup();

public Floor() {

/*Written by Andy Trent

Input:

Output:

Variables:
Red:

an appearance that sets the color of the geometry

length:

the length of the floor (and width, for that matter)

interval:
distance between lines

index:

the number of lines

FloorTG:
TransformGroup underneath the FloorBase group

FloorGeometry:
the points lines are to be drawn between.

Latitudinal:
the set of lines going in the x direction

Longitudinal:
set of lines which will later be in z direction

LongitudinalT:
Transform3D that flips Long. into z direction

LongitudinalTG:
TransformGroup LongitudinalT is placed into

This method has the neat task of drawing the floor. It only works if the interval

is .25 meters. I've tried to make it a bit more robust, but haven't had any luck

and it isn't *that* important to me right now. Ideally it would take a length and

an intended line density the calculate the number of lines needed and draw them.

Doing that runs into problems like having an odd number of points in the array.

When that happens, the edges of the floor don't show up because their isn't a pair

of points to connect.

*/

Appearance Red = new Appearance();

Red.setColoringAttributes(new ColoringAttributes(1.0f, 0f, .2f, 100));

float length = 4f;

float interval = .25f;

/*
if((length % interval) != 0)

interval = (int)(length / interval);

*/

int index = ((int)((length / interval + 1) * 2));

TransformGroup FloorTG = new TransformGroup();

LineArray FloorGeometry = new LineArray(index, GeometryArray.COORDINATES);

int i = 0;

for(float z = -length/2; z <= length/2; z+=interval) {

FloorGeometry.setCoordinate(i, new Point3f(-length/2, 0, z));

i++;

FloorGeometry.setCoordinate(i, new Point3f(length/2, 0, z));

i++;

}

Shape3D Latitudinal = new Shape3D(FloorGeometry, Red);

Shape3D Longitudinal = new Shape3D(FloorGeometry, Red);

Transform3D LongitudinalT = new Transform3D();

LongitudinalT.rotY((float)(Math.PI * .5));

TransformGroup LongitudinalTG = new TransformGroup(LongitudinalT);

LongitudinalTG.addChild(Longitudinal);

FloorTG.addChild(Latitudinal);

FloorTG.addChild(LongitudinalTG);

FloorBase.addChild(FloorTG);

}

public BranchGroup getFloorGraph() {

/*Written by Andy Trent

Input: none

Output: none

Variables: none

This is just a simple accessor method that returns a reference to the root of

the graph for this object. Not very exciting.*/

return FloorBase;

}

}
Source for Class Joint

import javax.media.j3d.*;

import javax.vecmath.*;

import java.lang.*;

import Axis;

class Joint extends BranchGroup {

/*Written by Andy Trent

Input: none

Output: none

Variables:
theta:

angle the joint is rotated. This is the only of these first four which

changes.

alpha:

the alpha value of that joint according to a looked-up value

a:

the a value for the joint according to looked-up value

d:

d value according to looked up value

thetaInit:
the initial angle or rotation for the joint. Used to return robot to

initial state

lowerBound:
the lower bound of this joint's motion

upperBound:
the upper bound of this joint's motion

jointTrans:
the Transform3D object representing the joint's location

jointTG:
the TransformGroup that other things (geometry etc) can attach to.

haveAxis:
flag stating whether the graphical coordinate frame is turned on or off

axis:

an axis object attached. When visible it will show the axis for the

coordinate frame of this joint.

axisAttachBG: the BranchGroup that the axis attaches to.

This class represents a joint on the robot. It extends branchgroup to make it easier to add

where ever it needs to be and so that it may be detached from the scene-graph at run-time.*/

private float theta, alpha, a, d, thetaInit;

private float lowerBound, upperBound;

private Transform3D jointTrans = new Transform3D();

private TransformGroup jointTG = new TransformGroup();

private int haveAxis = 0;

private Axis axis = new Axis();

private BranchGroup axisAttachBG = new BranchGroup();

private void calcTransform() {

/*Written by Andy Trent

Input: none

Output: none

Variables: m:
This is a 4x4 floating point matrix whose values are calculated according

to the kinematic equations for the PUMA robot. It is then used as the

Transform3D of the joint.

This method just calculates the transformation for the joing from its a, d, theta, and alpha

values then sets that transformation into the jointTG.*/

Matrix4f m = new Matrix4f();

m.m00 = (float)(Math.cos(theta));

m.m01 = -(float)(Math.cos(alpha) * Math.sin(theta));

m.m02 = (float)(Math.sin(alpha) * Math.sin(theta));

m.m03 = (float)(a * Math.cos(theta));

m.m10 = (float)(Math.sin(theta));

m.m11 = (float)(Math.cos(alpha) * Math.cos(theta));

m.m12 = -(float)(Math.sin(alpha) * Math.cos(theta));

m.m13 = (float)(a * Math.sin(theta));

m.m20 = 0;

m.m21 = (float)(Math.sin(alpha));

m.m22 = (float)(Math.cos(alpha));

m.m23 = d;

m.m30 = 0;

m.m31 = 0;

m.m32 = 0;

m.m33 = 1;

jointTrans.set(m);

jointTG.setTransform(jointTrans);

}

public Joint(float inTheta, float inAlpha, float inA, float inD, float inLower, float inUpper) {

/*Written by Andy Trent

Input:
inTheta:
the initial value for theta

inAlpha:
the initial value for alpha

inA:

the intial value for a

inD:

the intial value for d

inLower:
the lower bound of this joint's motion

inUpper:
the upper bound of this joint's motion

Output: none

This constructor is called for all but the 0th joint and just sets the joint's internal variables

to the values passed to the joint.*/

alpha = inAlpha;

theta = inTheta;

thetaInit = inTheta;

a = inA;

d = inD;

calcTransform();

jointTG.setCapability(jointTG.ALLOW_TRANSFORM_WRITE);

jointTG.setCapability(ALLOW_CHILDREN_EXTEND);

lowerBound = degToRad(inLower);

upperBound = degToRad(inUpper);

setupAxis();

setBGAttribs();

this.addChild(jointTG);

}

public Joint(Matrix3f rotation, Vector3f translation) {

/*Written by Andy Trent

Input:
rotation:
the rotation matrix which puts the 0th joint in the proper orientation

translation:the translation that puts it in the correct position

Output: none

Variables: none

This constructor is called by the 0th joint and puts it in the proper place to build the rest

of the robot on top of it. This is necessary because in all the books, the robot just starts

with joint1 being defined from a coordinate frame that does not match the standard x=horizontal,

y=vertical etc model. I have to get the 0th frame in the correct orientation so that joint1 and

all subsequent will be correctly represented.*/

jointTrans.setRotation(rotation);

jointTrans.setTranslation(translation);

jointTG.setCapability(jointTG.ALLOW_TRANSFORM_WRITE);

jointTG.setCapability(ALLOW_CHILDREN_EXTEND);

jointTG.setTransform(jointTrans);

setupAxis();

setBGAttribs();

thetaInit = 0;

this.addChild(jointTG);

}

private void setBGAttribs() {

/*Written by Andy Trent

Input: none

Output: none

Variables:
none

This method sets the capabilities for the joint. Since two constructors were needed and

the capabilities are the same for each type of joint, I stuck them in a method rather

than write it all out twice.*/

this.setCapability(ALLOW_CHILDREN_WRITE);

this.setCapability(ALLOW_DETACH);

this.setCapability(ALLOW_COLLISION_BOUNDS_WRITE);

}

private void setupAxis() {

/*Written by Andy Trent

Input: none

Output: none

Variables: none

This method prepares the BranchGroup that is used to attach the coordinate frame or axis

when that function is called up.*/

axisAttachBG.setCapability(ALLOW_CHILDREN_EXTEND);

axisAttachBG.setCapability(ALLOW_CHILDREN_WRITE);

this.addChild(axisAttachBG);

}

public void toggleAxis() {

/*Written by Andy Trent

Input: none

Output: none

Variables: none

If this joint has the graphical representation of it's axis turned on, it turns it off and

if it is turned off, it turns it on.*/

if(haveAxis == 0) {

axisAttachBG.addChild(axis.getAxisBG());

haveAxis = 1;

}

else {

axisAttachBG.removeChild(0);

//the axis is always child 0 because it is the only thing added to the BG

haveAxis = 0;

}

}

public void reset() {

/*Written by Andy Trent

Input: none

Output: none

Variables: none

This method returns the theta variable of the joint to its intitial value then recalculates

its Transform3D object.*/

theta = thetaInit;

calcTransform();

}

public void addTheta(float newTheta) {

/*Written by Andy Trent

Input: none

Output: none

Variables: none

This method adds the value of theta to be added to the old value. If the result is outside

the bounds of the joint, it sets the new angle to whichever bound was exceeded.

calcTransform() is then called to update the jointTrans object.
*/

theta += degToRad(newTheta);

if(theta > upperBound)

theta = upperBound;

if(theta < lowerBound)

theta = lowerBound;

calcTransform();

return;

}

final private float degToRad(float deg) {

/*Written by Andy Trent

Input: deg: An angle measure in degrees

Output: returns an equivalent angle measure in radians

Variables: none

Simply takes a degree measure and returns a radian. Finalized to inline it.*/

return (float)(deg * 2 * Math.PI / 360);

}

public void moveJoint(float range) {

/*Written by Andy Trent

Input: a range over which the joing should rotate

Output: none

Variables: not yet determined

This method doesn't work and I'm not sure how to make it. it is going to be responsible

for moving the joint around in an animated fashion...but now it just throws errors.*/

float motion;

if(theta + range > upperBound) {

motion = upperBound - theta;

theta = upperBound;

}

else {

if(range + theta < lowerBound) {

motion = lowerBound - theta;

theta = lowerBound;

}

else {

theta += range;

motion = range;

}

}

Alpha rotationAlpha = new Alpha(1, Alpha.INCREASING_ENABLE,

0, 0,

//triggerTime, phaseDelayDuration

10000, 0, 0,
//increaseAlpha, incAlphaRamp, atOneDuration

0, 0, 0);

//decAlpha, decAlphaRamp, alphaAtZero

Transform3D Axis = new Transform3D();

Axis.rotX(Math.PI * .5f);

RotationInterpolator rotator =

 new RotationInterpolator(rotationAlpha, jointTG, Axis,

0.0f, motion);

BoundingSphere bounds =

 new BoundingSphere(new Point3d(1.0f,1.0f,1.0f), 100.0);

rotator.setSchedulingBounds(bounds);

this.detach();

jointTG.addChild(rotator);

}

public Transform3D getTransform() {

/*Written by Andy Trent

Input: none

Output: returns a Transform3D object

Variables: none

This is just an accessor method that lets other methods do things with this joint's

Transform3D. I don't think it is used, but it has been at various times as I've tried

to make the animation work.*/

return jointTrans;

}

public TransformGroup getTransformGroup() {

/*Written by Andy Trent

Input: none

Output: returns a TransformGroup object

Variables:
none

This is another accessor method that lets others do things with this joint's TransformGroup.

The most important use is for a robot object to add geometry to this joint*/

return jointTG;

}

}
Source for Class Robot

import javax.media.j3d.*;

import javax.vecmath.*;

import java.lang.*;

import Joint;

import Axis;

import Block;

import com.sun.j3d.utils.geometry.Cylinder;

import com.sun.j3d.utils.geometry.Sphere;

import java.awt.event.*;

public class Robot implements MovementRequestListener {

/*Written by Andy Trent

Input: none

Output: none

This class will be instantiated to form a robot. It currently contains no inputs and

has no outputs.*/

private BranchGroup RobotBase = new BranchGroup();

//the root of the scenegraph

private TransformGroup RobotBaseTG = new TransformGroup();
//Transform from root to first node

private Appearance ltBlue = new Appearance();

//a light blue appearance

private Appearance dkBlue = new Appearance();

//a darker blue appearance

private Joint Joint0;

//Joint object representing the 0th joint

private Joint Joint1;

//Joint object representing the 1st joint

private Joint Joint2;

//Joint object representing the 2nd joint

private Joint Joint3;

//Joint object representing the 3rd joint

private Joint Joint4;

//Joint object representing the 4th joint

private Joint Joint5;

//Joint object representing the 5th joint

private Joint Joint6;

//Joing object representing the 6th joint

Claw claw;

//a Claw object that is the end effector for this robot

final private void addWriteCap(Group temp) {

/*Written by Andy Trent

Input: temp, of type Group

Output: none

This function is largely a time-saver. I needed to add the following capability to

several nodes, so I just made a function to do it. In the future, if I need to add

capabilities to every node in that set, I can just add them here once. The capability

added allows the children of a GroupNode to be written to.

It's one input is any node of extending Group. The function is finalized

so that it will be compiled inline.*/

temp.setCapability(Group.ALLOW_CHILDREN_WRITE);

}

final private float degToRad(float deg) {

/*Written by Andy Trent

Input: deg, a floating point variable

Output: a floating point value that is the radian equivalent of 'deg'

This function simply converts a degree measurement to a radian mesurement*/

return (float)(deg * 2 * Math.PI / 360);

}

private void buildRobot() {

/*Written by Andy Trent

Input: none

Output: none

Variables: tempM:

a Matrix3f which is the rotations necessary to place the 0th joint where

needs to be.

LinkXT:

The Transform3D object corresponding to LinkX

LinkXTG:
The TransformGroup object corresponding to LinkX

Link0:

The geometry for the cylinder which supports the robot

Link0a:

The wide cylinder that Link0 seems to be anchored to. It sits on the floor

Link1:

The cylinder extending horizontally from Link0. Link2 attaches to it.

Link2:

The box that is the upper arm.

Link3a:

Cylinder to cover the space between Link2 and Link3.

Link3:

The box that is the lower arm.

Link4:

The sphere which covers the gap between Link3 and the EE

This function adds to the global class variable 'RobotBase.' What it adds is the scenegraph

representing the robot. It builds all joints and links, then adds each to the base*/

RobotBase.setCapability(BranchGroup.ALLOW_CHILDREN_WRITE);

RobotBaseTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE | TransformGroup.ALLOW_PICK

| TransformGroup.ALLOW_PICKABLE_WRITE | TransformGroup.ALLOW_PICKABLE_READ

);

addWriteCap(RobotBaseTG);

Matrix3f tempM = new Matrix3f(
0f, 1f, 0f,

0f, 0f, 1f,

1f, 0f, 0f);

//set up all the joints...

Joint0 = new Joint(tempM, new Vector3f(0f, .6604f, 0f));

Joint1 = new Joint(((float)(Math.PI / 2)), (-(float)(Math.PI / 2)), 0, 0, -160, 160);

Joint2 = new Joint(0f, 0f, .432f, .1495f, -225, 45);

Joint3 = new Joint(((float)(Math.PI / 2)), ((float)(Math.PI / 2)), 0f, 0f, -45, 225);

Joint4 = new Joint(0f, (-(float)(Math.PI / 2)), 0f, .432f, -110, 170);

Joint5 = new Joint(0f, ((float)(Math.PI / 2)), 0f, 0f, -100, 100);

Joint6 = new Joint(0f, 0f, 0f, .0565f, -266, 266);

//build the links...

//starting with the base

Transform3D Link0T = new Transform3D();

Link0T.rotX((float)(Math.PI * .5));

Link0T.setTranslation(new Vector3f(0f, 0f, -.3302f));

TransformGroup Link0TG = new TransformGroup(Link0T);

addWriteCap(Link0TG);

Cylinder Link0 = new Cylinder(.07f, .6604f, ltBlue);

Link0TG.addChild(Link0);

//then the short cylinder around the bottom of the base

Cylinder Link0a = new Cylinder(.3f, .1f, dkBlue);

Transform3D Link0aT = new Transform3D();

Link0aT.rotX((float)(Math.PI * .5));

Link0aT.setTranslation(new Vector3f(0f, 0f, -.6104f));

TransformGroup Link0aTG = new TransformGroup(Link0aT);

addWriteCap(Link0aTG);

Link0aTG.addChild(Link0a);

//Link1, aka Shoulder

Transform3D Link1T = new Transform3D();

Link1T.rotX(-(float)(Math.PI * .5));

Link1T.setTranslation(new Vector3f(0f, 0f, ((float)(.1495 * .5))));

TransformGroup Link1TG = new TransformGroup(Link1T);

addWriteCap(Link1TG);

Cylinder Link1 = new Cylinder(.07f, (float)(2*.1495), dkBlue);

Link1TG.addChild(Link1);

//now for the second link -- upper arm...

Transform3D Link2T = new Transform3D();

Link2T.setTranslation(new Vector3f((-(float)(.4325 * .5)), 0f, 0f));

TransformGroup Link2TG = new TransformGroup(Link2T);

addWriteCap(Link2TG);

Block Link2 = new Block((float)(.4325 * .5), .09f, .07f, ltBlue);

Link2TG.addChild(Link2);

//add link3A....a thingy to cover up the wierd joint....

Transform3D Link3aT = new Transform3D();

Link3aT.rotX((float)(Math.PI * .5));

Cylinder Link3a = new Cylinder(.07f, .15f, dkBlue);

TransformGroup Link3aTG = new TransformGroup(Link3aT);

addWriteCap(Link3aTG);

Link3aTG.addChild(Link3a);

//and Link3...

Transform3D Link3T = new Transform3D();

Link3T.setTranslation(new Vector3f(0f, (float)(.4325 * .5), 0f));

TransformGroup Link3TG = new TransformGroup(Link3T);

addWriteCap(Link3TG);

Block Link3 = new Block(.07f, (float)(.4325 * .5), .06f, ltBlue);

Link3TG.addChild(Link3);

// add link4...the sphere to which the EE attaches

Transform3D Link4T = new Transform3D();

TransformGroup Link4TG = new TransformGroup(Link4T);

addWriteCap(Link4TG);

Sphere Link4 = new Sphere(((float)(.0565)), dkBlue);

Link4TG.addChild(Link4);

//next, string all the joints together...

RobotBaseTG.addChild(Joint0);

Joint0.getTransformGroup().addChild(Joint1);

Joint1.getTransformGroup().addChild(Joint2);

Joint2.getTransformGroup().addChild(Joint3);

Joint3.getTransformGroup().addChild(Joint4);

Joint4.getTransformGroup().addChild(Joint5);

Joint5.getTransformGroup().addChild(Joint6);

//then add the links to the joints...

Joint0.getTransformGroup().addChild(Link0TG);

Joint0.getTransformGroup().addChild(Link0aTG);

Joint1.getTransformGroup().addChild(Link1TG);

Joint2.getTransformGroup().addChild(Link2TG);

Joint2.getTransformGroup().addChild(Link3aTG);

Joint4.getTransformGroup().addChild(Link3TG);

Joint5.getTransformGroup().addChild(Link4TG);

//then add the claw

claw = new Claw(ltBlue, dkBlue);

Joint6.getTransformGroup().addChild(claw.getClawBG());

//and finally add the whole three to the root of the robot graph

RobotBase.addChild(RobotBaseTG);

 }

private void keepUpAppearances() {

/*Written by Andy Trent

Input: none

Output: none

This method just defines the two appearances used for color*/

ltBlue.setColoringAttributes(new ColoringAttributes(.5f, .6f, .7f, 0));

dkBlue.setColoringAttributes(new ColoringAttributes(0f, 0f, 1.0f, 100));

}

public BranchGroup getRobotGraph() {

/*Written by Andy Trent

Input: none

Output: BranchGroup representing the root of the robot graph

This method returns the base of the robot scene-graph*/

return RobotBase;

}

public void movementRequested(MovementRequestEvent e) {

/*Written by Andy Trent

Input: One MovementRequestEvent, e

Output: None

This processes all the commands sent to the robot in a big switch statement. The parts

commented out are things which we don't have the commands worked out for yet.*/

switch(e.getID()) {

case MovementRequestEvent.ROTATE:

//this one causes the robot to rotate the specified angles and appear at the new position

Joint1.addTheta(e.arg[0]);

Joint2.addTheta(e.arg[1]);

Joint3.addTheta(e.arg[2]);

Joint4.addTheta(e.arg[3]);

Joint5.addTheta(e.arg[4]);

Joint6.addTheta(e.arg[5]);

break;

/*

case MovementRequestEvent.ROTATE:

//this will eventually be an animated version of ROTATE

Joint0.moveJoint(e.arg[0]);

Joint1.moveJoint(e.arg[1]);

Joint2.moveJoint(e.arg[2]);

Joint3.moveJoint(e.arg[3]);

Joint4.moveJoint(e.arg[4]);

Joint5.moveJoint(e.arg[5]);

break;

case MovementRequestEvent.MOVETO:

//this takes care of moving to a particular point

processVector(stuff......);

break;

*/

case MovementRequestEvent.RESET:

//this will return the robot to its original position

Joint1.reset();

Joint2.reset();

Joint3.reset();

Joint4.reset();

Joint5.reset();

Joint6.reset();

break;

case MovementRequestEvent.TOGGLEAXIS:

//this one toggles a visual representation of the axis for each joint of the robot

switch(e.arg[0]) {

case 0:

Joint0.toggleAxis();

break;

case 1:

Joint1.toggleAxis();

break;

case 2:

Joint2.toggleAxis();

break;

case 3:

Joint3.toggleAxis();

break;

case 4:

Joint4.toggleAxis();

break;

case 5:

Joint5.toggleAxis();

break;

case 6:

Joint6.toggleAxis();

break;

}

break;

}

}

private Transform3D processVector(float x, float y, float z, float aboutX, float aboutY, float aboutZ) {

/*Written by Andy Trent

Input: x:

the new x coordinate for the EE

y:

the new y coordinate for the EE

z:

the new z coordinate for the EE

aboutX:
Any rotation about the X-axis for the new position

aboutY: Any rotation about the Y-axis for the new position

aboutZ: Any rotation about the Z-axis for the new position

Output: returns a Transform3D that is a transformation to the new coordinate frame of joint6

Variables:
Xrot: Transform3D with the new X rotation matrix

Yrot: Transform3D with the new Y rotation matrix

Zrot: Transform3D with the new Z rotation matrix

result: Transform3D built from all the rotations and the translation

This method takes the parameters of the new position for the EE and creates a transformation

to that point. This will later be input into the inverse kinematics algorithm to compute the

path.*/

Transform3D Xrot = new Transform3D();

Transform3D Yrot = new Transform3D();

Transform3D Zrot = new Transform3D();

Transform3D result = new Transform3D();

Xrot.rotX(degToRad(aboutX));

Yrot.rotY(degToRad(aboutY));

Zrot.rotZ(degToRad(aboutZ));

result.mul(Xrot);

result.mul(Yrot);

result.mul(Zrot);

result.setTranslation(new Vector3f(x, y, z));

return result;

}

public Robot() {

/*Written by Andy Trent

Input: none

Output: None

This is the constructor for the robot. It builds the scene-graph and sets up the colors.

From that point, the robot just sits and waits for events.*/

keepUpAppearances();

buildRobot();

}

}
Source for Class simpleLayout

import javax.media.j3d.*;

import javax.vecmath.*;

import java.lang.*;

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import FactoryFloor;

import VALIIParser;

public class simpleLayout extends Applet {

/*Written by Andy Trent

Variables: floor: this is the floor of the factory where the robot sits and does

its thing...

This is the layout...although I don't like it very much. For some weird reason,

(I think having to do with a bug in awt) I can only get things to draw in the center

panel of border layouts so this program is just a border layout. I think if I were to

redo it in swing, it would work better, but I don't know swing right now.*/

private FactoryFloor floor = new FactoryFloor();

public simpleLayout() {

/*Written by Andy Trent

Input: none

Output: none

Variables: progInterface: the object that will parse code and send commands

wherever they need to go.

This is the layout. It just adds the floor and the parser, then adds a listener for

the buttons and the necessary code to get any events (buttons being pushed) to the

correct place*/

setLayout(new BorderLayout());

add("Center", floor);

final VALIIParser progInterface = new VALIIParser();

progInterface.addMovementRequestListener(floor.George);

add("West", progInterface);

Button ParseButton = new Button("ParseButton");

add("South", ParseButton);

ParseButton.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

progInterface.processProgram();

}

});

}

public static void main(String[] blah) {

new MainFrame(new simpleLayout(), 750, 500);

}

}
Parser Source Code

4.2.2 Source Code for AdaptedStringTokenizer

/**

 * The <code>AdaptedStringTokenizer</code> class extends {@link java.util.StringTokenizer StringTokenizer}

 * to allow the user to use {@link java.lang.String strings} as tokens. The StringTokenizer takes a

 * {@link java.lang.String string} and a set of tokens and returns a set of {@link java.lang.String strings}

 * representing the original string divided according the the tokens. For example, a common set of tokens

 * is the whitespace characters. The string "the quick
brown fox" would tokenize to: "the", "quick",

 * "brown", "fox". When the next token is called for any preceeding delimiters are skipped then from

 * the first character that isn't a delimiter characters are added to the out string until another token

 * is hit.

 *

 * @author Will Holcomb

 */

public class AdaptedStringTokenizer extends java.util.StringTokenizer

{

/**

 * boolean flag representing whether or not whitespace should be included in the strings

 * that are returned

 */

public boolean allowWhitespace;

/**

 * boolean flag representing whether or not tokens should be included in the strings

 * that are returned

 */

public boolean returnTokens;

/**

 * the current position of the StringTokenizer in the sting being processed

 */

protected int currentIndex;

/**

 * the maximum index of the string being processed

 */

protected int maxIndex;

/**

 * the string which is being tokenized

 */

protected String tokenString;

/**

 * the delimiters that determine where the string is divided

 */

protected String [] tokens;

/**

 * Constructs a tokenization of the given string.

 *

 * @param s the string to be toknized

 * @param t the delimiters that are to be used to separate the tokens

 */

public AdaptedStringTokenizer(String s, String [] t)

{

this(s, t, false, true);

}

/**

 * Constructs a tokenization of the given string.

 *

 * @param s the string to be toknized

 * @param t the delimiters that are to be used to separate the tokens

 * @param whitespace flag indicating whether or not to include whitespace in the returned tokens

 */

public AdaptedStringTokenizer(String s, String [] t, boolean whitespace)

{

this(s, t, whitespace, true);

}

/**

 * Constructs a tokenization of the given string.

 *

 * @param s the string to be toknized

 * @param t the delimiters that are to be used to separate the tokens

 * @param whitespace flag indicating whether or not to include whitespace in the returned tokens

 * @param tok flag indicating whether or not the delimiters should be returned as tokens

 */

public AdaptedStringTokenizer(String s, String [] t, boolean whitespace, boolean tok)

{

super("");

tokenString = s;

tokens = t;

allowWhitespace = whitespace;

returnTokens = tok;

currentIndex = 0;

maxIndex = tokenString.length();

}

/**

 * Internal method to skip over delimiters in the string being tokenized until a

 * non-delimiter is reached.

 */

protected void skipDelimiters()

{

if(!returnTokens)

{

int i = 0;

int maxLength = 0;

do

{

for(i = 0; i < tokens.length; i++)

if(tokenString.startsWith(tokens[i], currentIndex))

maxLength = Math.max(maxLength, tokens[i].length());

currentIndex += maxLength;

}

while(maxLength > 0);

}

}

/**

 * Internal method to skip over whitespace (as defined in {@link

 * Character#isWhitespace(char) Charater.isWhitespace}) characters in the string

 * being tokenized until a non-whitespace character is reached.

 */

protected void skipWhitespace()

{

if(!allowWhitespace)

{

boolean finished = false;

while((currentIndex < maxIndex) && !finished)

if(Character.isWhitespace(tokenString.charAt(currentIndex)))

currentIndex++;

else

finished = true;

}

}

/**

 * Internal method representing the state of the current substring left from the

 * tokenization to this point.

 *

 * @return whether or not the current substring begins with a delimiter

 */

protected boolean startsWithToken()

{

boolean tokenFound = false;

for(int i = 0; i < tokens.length && !tokenFound; i++)

if(tokenString.startsWith(tokens[i], currentIndex))

tokenFound = true;

return tokenFound;

}

/**

 * @return whether or not a subsequent call to {@link #nextToken() nextToken} will return

 * an element

 */

public boolean hasMoreTokens()

{

skipDelimiters();

skipWhitespace();

return (currentIndex < maxIndex);

}

/**

 * There are several different cases for what can be considered tokens depending on the

 * states of different flags. The string tokenizer is represented internally as a string

 * and then an index into the string representing the point to which it has been

 * tokenized thus far. Under the default conditions the tokenizer is set not to return

 * whitespace and it is set to return the delimiters. For this case the next token will

 * forward the internal index while the current character is whitespace then if the

 * substring begins with a delimiter then all the delimiters are checked and the longest

 * is returned as the next token. Otherwise the index is forwarded until a delimiter is

 * hit or more whitespace is hit. Changing the allow whitespace flag will keep the

 * preceeding whitespace from being skipped and it will also make it so that tokens are

 * only delimited by the delimiters. If the return tokens is turned off then at the

 * beginning in addition to skipping whitespace any initial delimiters are also skipped.

 *

 * @return the next substring of the original string which meets the criteria as a token

 */

public String nextToken()

{

if(!hasMoreTokens())

{

System.out.println("Ran off the end of the string in AdaptedStringTokenizer");

return null;

}

int start = currentIndex;

boolean tokenCompleted = false;

int maxLength = 0;

for(int i = 0; i < tokens.length && returnTokens; i++)

if(tokenString.startsWith(tokens[i], currentIndex))

{

maxLength = Math.max(maxLength, tokens[i].length());

tokenCompleted = true;

}

currentIndex += maxLength;

while(currentIndex < maxIndex && !tokenCompleted && !startsWithToken())

if(!allowWhitespace

 && Character.isWhitespace(tokenString.charAt(currentIndex)))

tokenCompleted = true;

else

currentIndex++;

return tokenString.substring(start, currentIndex);

}

/**

 * Operates the same as {@link #nextToken() nextToken()} but before the processing

 * is begun the set of delimiters is replaced.

 *

 * @param t the new set of delimiters

 * @return the next substring of the original string which meets the criteria as a token

 */

public String nextToken(String [] t)

{

tokens = t;

return nextToken();

}

}

Source Code for AdditionOperator

/**

 * This represents the operator + in an arithmetic equation; as in 3 + 5 = 8.

 *

 * @author Will Holcomb

 */

public class AdditionOperator extends Operator

{

/**

 * Creates an {@link Operator} with:

 *

 *
token: +

 *
 precedence: 3

 *
numberOperands: 2

 *
preceededByAnOperand: true

 *

 */

public AdditionOperator()

{

token = new String("+");

precedence = 3;

numberOperands = 2;

preceededByAnOperand = true;

}

/**

 * @param x[] the operands

 * @return x[0] + x[1]

 */

public int operate(int [] x)

{

int solution;

if(x.length == numberOperands)

solution = x[0] + x[1];

else

{

System.out.println("Error in \"" + token + "\"");

solution = 0;

}

return solution;

}

}

Source Code for ArithmeticEquation

import java.util.*;

/**

 * This class represents an arithmetic equation. For information on the storage method

 * see the {@link #ArithmeticEquation constructor} and

 * {@link PostfixExpression#setEquation(ExpressionElementStack)}. For information about

 * how the solution is found, see {@link PostfixExpression#solution}.

 *

 * @author Will Holcomb

 */

public class ArithmeticEquation extends PostfixExpression

{

/**

 * The calculating for the initialization of this class is fairly complicated.

 * It recieves a string representing an infix equation which is then parsed using

 * {@link AdaptedStringTokenizer}. The delimiters used in

 * the parse are the tokens from {@link ArithmeticOperatorTable}

 * and {@link GenericGroupingSymbolTable}. The algorithm used

 * then is this:

 *

 * <code>

 *

 *
create a new stack of expression elements SE

 *
while(there are more tokens)

 *

 *

 *

 if the current token is an {@link Operator Operator}

 *

 (as determined by the {@link OperatorTable#isAnOperator(String, boolean) isAnOperator}

 *

 function in {@link OperatorTable})

 *

 *

 push the appropriate {@link Operator} onto SE

 *

 *

 else if the current token is a {@link GroupingSymbol}

 *

 (as determined by the {@link GroupingSymbolTable#isAGroupingSymbol(String)}

 *

 function in {@link GroupingSymbolTable GroupingSymbolTable})

 *

 *

 push the appropriate {@link GroupingSymbol GroupingSymbol} onto SE

 *

 *

 else if the current token is a {@link java.lang.Integer Integer}

 *

 (as determined by the {@link java.lang.Integer#parseInt(String) parseInt} function

 *

 in {@link java.lang.Integer Integer})

 *

 *

 push the appropriate {@link java.lang.Integer Integer} onto SE

 *

 *

 else consider the current token to be a {@link Variable Variable}

 *

 *

 push the approprate {@link Variable Variable} onto SE

 *

 *

 *
Reverse SE

 *

 *
 Call {@link PostfixExpression#setEquation(ExpressionElementStack) setEquation} of

 *
 {@link PostfixExpression PostfixExpression} with SE

 *

 *

 * </code>

 * After the while loop is through SE now contains all the information that was in the initial string,

 * but all of the information has been identified and pushed into a stack. The only problem is that in

 * the process of pushing it on the stack the order has been reversed, so the

 * {@link ExpressionElementStack#reverse()} method

 * is called on SE and SE is sent to the {@link PostfixExpression#setEquation(ExpressionElementStack)} of

 * the superclass to be converted and stored in postfix form.

 *

 * @see PostfixExpression#setEquation(ExpressionElementStack)

 * @param i string representing an infox arithmetic equation

 */

public ArithmeticEquation(String i)

{

op = new ArithmeticOperatorTable();

gt = new GenericGroupingSymbolTable();

infixString = i;

ExpressionElementStack tempStack = new ExpressionElementStack();

int index = 0;

String [] temp1 = op.getTokens();

String [] temp2 = gt.getTokens();

String [] tokens = new String [temp1.length + temp2.length];

for(index = 0; index < temp1.length; index++)

tokens[index] = temp1[index];

for(index = 0; index < temp2.length; index++)

tokens[index + temp1.length] = temp2[index];

StringTokenizer iTokens = new AdaptedStringTokenizer(i, tokens);

boolean lastWasAnOperand = false;

String currentToken;

while(iTokens.hasMoreTokens())

{

currentToken = iTokens.nextToken();

if(op.isAnOperator(currentToken, lastWasAnOperand))

{

tempStack.push(new ExpressionElement(op.operatorFor(currentToken, lastWasAnOperand)));

lastWasAnOperand = false;

}

else if(gt.isAGroupingSymbol(currentToken))

{

tempStack.push(new ExpressionElement(gt.symbolFor(currentToken)));

if(gt.isAnOpeningSymbol(currentToken))

lastWasAnOperand = false;

else

lastWasAnOperand = true;

}

else

{

try

{

tempStack.push(new ExpressionElement(

 new Integer(Integer.parseInt(currentToken))));

}

catch(NumberFormatException e)

{

tempStack.push(new ExpressionElement(

 new Variable(currentToken)));

}

lastWasAnOperand = true;

}

}

tempStack.reverse();

setEquation(tempStack);

}

}

Source Code for AdditionOperatorTable

/**

 * Class which represents all of the operators that may be allowed in a simple

 * arithmetic equation. + ({@link AdditionOperator AdditionOperator}),

 * * ({@link MultiplicationOperator MultiplicationOperator}),

 * / ({@link DivisionOperator DivisionOperator}),

 * - ({@link SubtractionOperator SubtractionOperator}), and

 * - ({@link NegationOperator NegationOperator})).

 *

 * Also to demonstrate the capacity of multiple character delimiters in

 * {@link AdaptedStringTokenizer AdaptedStringTokenizer} the operator

 * {@link SineOperator SineOperator} is also included.

 *

 * @author Will Holcomb

 */

public class ArithmeticOperatorTable extends OperatorTable

{

/**

 * Constructs a new {@link OperatorTable OperatorTable} with the

 * appropriate entries.

 */

public ArithmeticOperatorTable()

{

super(6);

add(new AdditionOperator());

add(new SubtractionOperator());

add(new MultiplicationOperator());

add(new DivisionOperator());

add(new NegationOperator());

add(new SineOperator());

}

}
Source Code for DivisionOperator

/**

 * This represents the operator / in an arithmetic equation; as in 6 / 2 = 3.

 *

 * @author Will Holcomb

 */public class DivisionOperator extends Operator

{

/**

 * Creates an {@link Operator} with:

 *

 *
token: /

 *
 precedence: 2

 *
numberOperands: 2

 *
preceededByAnOperand: true

 *

 */

public DivisionOperator()

{

token = new String("/");

precedence = 2;

numberOperands = 2;

preceededByAnOperand = true;

}

/**

 * @param x[] the operands

 * @return x[0] / x[1]

 */

public int operate(int [] x)

{

int solution;

if(x.length == numberOperands)

solution = x[0] / x[1];

else

{

System.out.println("Error in \"" + token + "\"");

solution = 0;

}

return solution;

}

}

Source Code for Interface Equation

/**

 * This is an interface representing the implementing object is an equation.

 *

 * @author Will Holcomb

 */

public interface Equation

{

/**

 * Returns the solution for the equation. Currently only integer equations

 * are supported.

 *

 * @return the solution for the equation

 */

public int solution();

/**

 * Returns a string representing the equation.

 *

 * @return string representing the equation being solved

 */

public String toString();

}

Source Code for ExpressionElement

/**

 * This class represents an element of an expression. The possible elements

 * which this class may act for a wrapper for are: {@link java.lang.Integer},

 * {@link Variable}, {@link Operator}, and {@link GroupingSymbol}.

 *

 * @author Will Holcomb

 */

public class ExpressionElement

{

/**

 * Identifier for the beginning of the identifiers

 */

public final static int START = 3;

/**

 * Identifier for an {@link java.lang.Integer} element in the wrapper

 */

public final static int VALUE = START;

/**

 * Identifier for a {@link Variable} element in the wrapper

 */

public final static int VARIABLE = START + 1;

/**

 * Identifier for a {@link Operator} element in the wrapper

 */

public final static int OPERATOR = START + 2;

/**

 * Identifier for a {@link GroupingSymbol} element in the wrapper

 */

public final static int GROUPING_SYMBOL = START + 3;

/**

 * Identifier for an unknown element in the wrapper

 */

public final static int OTHER = START + 4;

/**

 * Identifier for the end of the identifiers

 */

public final static int END = OTHER;

/**

 * Holds one of the identifiers and specifies the type of the object wrapped

 */

public int type;

/**

 * The object which is being wrapped

 */

Object content;

/**

 * Sets the contents and establishes the type with a series of instanceof checks

 *

 * @param o the object to be wrapped may be an {@link java.lang.Integer Integer}, {@link Variable},

 * {@link Operator}, or {@link GroupingSymbol}.

 */

public ExpressionElement(Object o)

{

content = o;

if(o instanceof Integer)

type = VALUE;

else if(o instanceof Variable)

type = VARIABLE;

else if(o instanceof Operator)

type = OPERATOR;

else if(o instanceof GroupingSymbol)

type = GROUPING_SYMBOL;

else

type = OTHER;

}

public String typeString()

{

switch(type)

{

case (VALUE):

return new String("Value");

case (VARIABLE):

return new String("Variable");

case (OPERATOR):

return new String("Operator");

case (GROUPING_SYMBOL):

return new String("Grouping Symbol");

case (OTHER):

return new String("Other [" + content.getClass().getName() + "]");

default:

return new String("Unknown [" + content.getClass().getName() + "]");

}

}

public String toString()

{

switch(type)

{

case (VALUE):

return new String("Value: " + ((Integer)content).toString());

case (VARIABLE):

return new String("Variable: " + ((Variable)content).toString());

case (OPERATOR):

return new String("Operator: " + ((Operator)content).toString());

case (GROUPING_SYMBOL):

return new String("Grouping symbol: " + ((GroupingSymbol)content).toString());

case (OTHER):

return new String("Other [" + content.getClass().getName() + "]");

default:

return new String("Unknown [" + content.getClass().getName() + "]");

}

}

}
Source Code for ExpressionElementStack

import java.util.*;

/**

 * This is a simple extension of {@link java.util.Stack} which is designed specifically

 * to hold {@link ExpressionElement ExpressionElements}. The major additions are

 * {@link #nextElement}

 * which returns an {@link ExpressionElement} as opposed the {@link java.lang.Object}

 * that is usually returned. The same goes for {@link #top} which adds the same typecasting

 * for {@link java.util.Stack#peek}.

 *

 * Other functionality added was the capacity to {@link #reverse} the elements in the stack

 * and to {@link #dump} the information in the stack to {@link System#out}.

 *

 * @author Will Holcomb

 */

public class ExpressionElementStack extends java.util.Stack

{

/**

 * Removes the top element from the stack and returns it

 *

 * @return the top of the stack

 */

public ExpressionElement nextElement()

{

return (ExpressionElement)pop();

}

/**

 * Check the top element from the stack and returns it; the top

 * remains on the stack.

 *

 * @return the top of the stack

 */

public ExpressionElement top()

{

return (ExpressionElement)peek();

}

/**

 * Reverses the order of the elements in the stack. The algorithm used is this:

 * <code>

 *

 *
n = the size of the stack

 *
i = 1

 *
while i < n - i

 *

 *

swap elements i and n - i

 *

i = i + 1

 *

 *

 * </code>

 *

 * This method is useful because sometimes when a stack is being created it ends

 * up being created in the reverse order than what it needs to be in to be useful.

 * (Like {@link ArithmeticEquation#ArithmeticEquation} for example.) A stack is

 * a First In Last Out structure and what is needed

 * sometimes is a Last In Last Out structure. In order

 * to get one I could either create a new queue type or add this method to stack.

 * This was by far the more efficient solution.

 */

public void reverse()

{

Object tempObject;

int i = 0;

int n = size();

while(i < n - i - 1)

{

tempObject = elementAt(i);

setElementAt(elementAt(n - i - 1), i);

setElementAt(tempObject, n - i - 1);

i++;

}

}

/**

 * Prints the elements of the stack to {@link java.lang.System#out}. Each element is

 * on its own line and includes the {@link ExpressionElement#typeString} and a

 * {@link java.lang.String string} representation of the element.

 *

 * This function is useful for debugging.

 */

public void dump()

{

Enumeration tempEnumeration = elements();

ExpressionElement currentElement;

if(size() == 0)

System.out.println("Stack is empty.");

else

System.out.println("Expression consists of:");

while(tempEnumeration.hasMoreElements())

{

currentElement = (ExpressionElement)tempEnumeration.nextElement();

System.out.print("\t" + currentElement.typeString());

if(currentElement.type == ExpressionElement.VALUE)

System.out.print(" [" + ((Integer)currentElement.content).intValue() + "]");

else if(currentElement.type == ExpressionElement.OPERATOR)

System.out.print(" [" + ((Operator)currentElement.content).token + "]");

else if(currentElement.type == ExpressionElement.GROUPING_SYMBOL)

System.out.print(" [" + ((GroupingSymbol)currentElement.content).token() + "]");

else if(currentElement.type == ExpressionElement.VARIABLE)

System.out.print(" [" + ((Variable)currentElement.content).name + "]"

 + " [" + ((Variable)currentElement.content).valueOf() + "]");

else

System.out.print(" [" + "ERROR" + "]");

System.out.println("");

}

}

}
Source Code for ExpressionTest

/**

 * This is a driver program to test the {@link ArithmeticEquation} class.

 *

 * @author Will Holcomb

 */

public class ExpressionTest

{

protected static ArithmeticEquation e;

public static void main(String[] agrs)

{

Variable [] x = new Variable[4];

x[0] = new Variable("x", 3);

x[1] = new Variable("y", 52);

x[2] = new Variable("z", 5);

x[3] = new Variable("alpha", -4);

System.out.println("Testing a single digit equation");

singleDigitTest();

System.out.println("");

System.out.println("Testing a multiple digit equation");

multipleDigitTest();

System.out.println("");

System.out.println("Testing each of the operators");

simpleAdditionTest();

simpleSubtractionTest();

simpleMultiplicationTest();

simpleDivisionTest();

simpleNegationTest();

System.out.println("");

System.out.println("Testing combinations of operators");

operatorComboOne();

operatorComboTwo();

operatorComboThree();

operatorComboFour();

System.out.println("");

System.out.println("Grouping symbol tests");

groupingSymbolOne();

groupingSymbolTwo();

System.out.println("");

for(int i = 0; i < x.length; i++)

System.out.println("The value of " + x[i].name + " is " + x[i].valueOf());

System.out.println("");

e = new ArithmeticEquation("(-x*((3+y)-(2*alpha*-(y-z)))+z)*x");

System.out.println(e.infixEquation() + " = " + e.solution());

x[0].setValue(-27);

x[1].setValue(0);

x[2].setValue(22);

x[3].setValue(-1);

System.out.println("");

for(int i = 0; i < x.length; i++)

System.out.println("The value of " + x[i].name + " is " + x[i].valueOf());

System.out.println("");

e = new ArithmeticEquation("(-x*((3+y)-(2*alpha*-(y-z)))+z)*x");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Checks to see if an arithmetic equation can be created with a single numeric digit.

 */

public static void singleDigitTest()

{

e = new ArithmeticEquation("5");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Checks to see if an arithmetic equation can be created with multiple numeric digits.

 */

public static void multipleDigitTest()

{

e = new ArithmeticEquation("56");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("5656");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Does a simple addition

 */

public static void simpleAdditionTest()

{

e = new ArithmeticEquation("5 + 4");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Does a simple subtraction

 */

public static void simpleSubtractionTest()

{

e = new ArithmeticEquation("5 - 4");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Does a simple multiplication

 */

public static void simpleMultiplicationTest()

{

e = new ArithmeticEquation("5 * 4");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Does a simple division

 */

public static void simpleDivisionTest()

{

e = new ArithmeticEquation("6 / 2");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("6 / 51");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("51 / 6");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Does a simple negation

 */

public static void simpleNegationTest()

{

e = new ArithmeticEquation("-4");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Tests the combination of multiples of the same operator

 */

public static void operatorComboOne()

{

e = new ArithmeticEquation("16 + 2 + 14 + 61 + 2");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("6 * 62 * 24 * 6 * 22");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Tests multiples of operators with the same precedence

 */

public static void operatorComboTwo()

{

e = new ArithmeticEquation("6 + 12 - 44 - 6 + 23 + 2");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("6 / 21 * 42 * 6 / 23");

System.out.println(e.infixEquation() + " throws a divide by zero exception");

System.out.println("Error");

e = new ArithmeticEquation("6 * 21 * 42 * 6 / 23");

System.out.println(e.infixEquation() + " = " + e.solution());

System.out.println("Error");

e = new ArithmeticEquation("---345");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Tests multiples of different operators where the correct solution is

 * found by simply solving left to right

 */

public static void operatorComboThree()

{

e = new ArithmeticEquation("68 * 42 * 13 + -47");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("62 / 2 - 3");

System.out.println(e.infixEquation() + " = " + e.solution());

}

/**

 * Tests multiples of different operators where the correct solution is

 * only found by using the order of operations

 */

public static void operatorComboFour()

{

e = new ArithmeticEquation("65 + 2 + 43 * 4 * -18");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("12 + 52 + -14 / 3");

System.out.println(e.infixEquation() + " = " + e.solution());

System.out.println("Error");

}

public static void groupingSymbolOne()

{

e = new ArithmeticEquation("(31 + 14) * 61");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("-(34 - 12) * [19 + -2] - -{2 * 3}");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("-(34 - 12) * (19 + -2) - -(2 * 3)");

System.out.println(e.infixEquation() + " = " + e.solution());

e = new ArithmeticEquation("-(34 - 12) * [19 + -2] / -{2 * 3}");

System.out.println(e.infixEquation() + " = " + e.solution());

System.out.println("Error");

e = new ArithmeticEquation("-(34 - 12) * (19 + -2) / -(2 * 3)");

System.out.println(e.infixEquation() + " = " + e.solution());

System.out.println("Error");

}

public static void groupingSymbolTwo()

{

e = new ArithmeticEquation("(-(3)*((3+(52))-(2*(-4)*-((52)-(5))))+(5))*3");

System.out.println(e.infixEquation() + " = " + e.solution());

}

}
Source Code for GenericGroupingSymbolTable

/**

 * Creates a new {@link GroupingSymbolTable} containing the symbols '(', ')',

 * '[', ']', '{' and '}'.

 *

 * @author Will Holcomb

 */

public class GenericGroupingSymbolTable extends GroupingSymbolTable

{

/**

 * Creates a new {@link GroupingSymbolTable} containing the symbols '(', ')',

 * '[', ']', '{' and '}'.

 */

public GenericGroupingSymbolTable()

{

super(6);

add(new GroupingSymbol("(", ")", true));

add(new GroupingSymbol("(", ")", false));

add(new GroupingSymbol("{", "}", true));

add(new GroupingSymbol("{", "}", false));

add(new GroupingSymbol("[", "]", true));

add(new GroupingSymbol("[", "]", false));

}

}
Source Code for GroupingSymbol

/**

 * This class represents a grouping symbol in an equation. Grouping symbols are used

 * to change the order in which an infix equation is solved. Normally an equation is solved

 * it is solved left to right and according to the order of operations. Grouping symbols

 * allow one to specify that certain operations which would normally occur later in the

 * solving can occur earlier.

 *

 * Parentheses are common grouping symbols for instance. The use of parentheses allows one

 * to change the meaning of 3 + 4 / 14 from 3 2/7 to (3 + 4) / 14 which is 7.

 *

 * I am thinking that no further explanation is needed. This should have been covered in

 * fifth grade or so.

 *

 * @author Will Holcomb

 */

public class GroupingSymbol

{

/**

 * Symbol representing that a group has been begun

 */

public String openToken;

/**

 * Symbol representing that a group has been closed

 */

public String closeToken;

/**

 * flag telling whether or not this particular symbol instance was

 * an open or a close

 */

public boolean openingSymbol;

/**

 * Calls {@link #GroupingSymbol(String, String, boolean)} with a default

 * of the symbol being an opening symbol.

 *

 * @param o the opening symbol

 * @param c the closing symbol

 */

public GroupingSymbol(String o, String c)

{

this(o, c, true);

}

/**

 * A {@link GroupingSymbol} is created not simply with the actual token

 * that it represents but also the close for that symbol. This is done

 * because a grouping symbol is worthless unless its close is known.

 *

 * @param o the opening symbol

 * @param c the closing symbol

 * @param opening flag telling whether this particular symbol represents

 * the open or the close for this pair

 */

public GroupingSymbol(String o, String c, boolean opening)

{

openToken = o;

closeToken = c;

openingSymbol = opening;

}

/**

 * Tells whether o is the opposing symbol for this symbol.

 *

 * @param o the grouping symbol to be checked against

 */

public boolean isCloseFor(GroupingSymbol o)

{

if(openToken.equalsIgnoreCase(o.openToken)

 || closeToken.equalsIgnoreCase(o.closeToken))

return openingSymbol != o.openingSymbol;

else

return false;

}

/**

 * Returns the appropriate token representing this grouping symbol.

 * If the symbol is an open then {@link #openToken} is returned

 * otherwise {@link #closeToken} is returned.

 *

 * @return the token for the current symbol

 */

public String token()

{

if(openingSymbol)

return openToken;

else

return closeToken;

}

/**

 * @return returns the value of {@link #token}

 */

public String toString()

{

return token();

}

/**

 * Tells if the current symbol represents the beginning of a group

 *

 * @return <code>true</code> if the symbol begins a group

 */

public boolean isAnOpeningSymbol()

{

return openingSymbol;

}

/**

 * Tells if the current symbol represents the close of a group

 *

 * @return <code>true</code> if the symbol closes a group

 */

public boolean isAClosingSymbol()

{

return !openingSymbol;

}

}

Source Code for GroupingSymbolTable

/**

 * Much like {@link OperatorTable} this call serves as a holder for a set of other objects

 * and acts as an interface to allow use of them. In this case the objects are

 * {@link GroupingSymbol GroupingSymbols}.

 *

 * The most common usage of {@link GroupingSymbolTable} is {@link GenericGroupingSymbolTable}.

 *

 * @author WillHolcomb

 */

public class GroupingSymbolTable

{

/**

 * The current maximum number of elements possible

 */

protected int capacity = 0;

/**

 * The current number of elements

 */

protected int size = 0;

/**

 * The elements contained in the table

 */

protected GroupingSymbol [] symbols;

/**

 * Creates a new empty table with a capacity of 20 elements

 */

public GroupingSymbolTable()

{

this(20);

}

/**

 * Creates a new empty table with a capacity of i elements.

 * If i is 0 then the capacity is set to 1.

 */

public GroupingSymbolTable(int i)

{

capacity = i;

if(capacity == 0)

capacity++;

symbols = new GroupingSymbol[capacity];

}

/**

 * Adds a {@link GroupingSymbol} to the table. If there is not room in the table for

 * the symbol then (in the fashion of {@link java.util.Vector}) the capacity is

 * doubled thereby making space.

 *

 * @param o symbol to be added

 */

public void add(GroupingSymbol o)

{

if(size == capacity)

{

GroupingSymbol[] tempTable = new GroupingSymbol[capacity * 2];

for(int i = 0; i < size; i++)

tempTable[i] = symbols[i];

symbols = tempTable;

capacity *= 2;

}

symbols[size] = o;

size++;

}

/**

 * Identifies {@link java.lang.String} <code>token</code> as being a symbol in the table or not.

 *

 * @param token {@link java.lang.String} to be identified

 * @return <code>true</code> if <code>token</code> is in the table

 */

public boolean isAGroupingSymbol(String token)

{

boolean found = false;

for(int i = 0; i < size && !found; i++)

if(symbols[i].openToken.equals(token)

 || symbols[i].closeToken.equals(token))

found = true;

return found;

}

/**

 * Identifies {@link java.lang.String} <code>token</code> as being an opening symbol or not.

 * If <code>token</code> is not in the table then a {@link NotATableElementExcepetion}

 * will be thrown (once I get that running.)

 *

 * @param token {@link java.lang.String} to be identified

 * @return <code>true</code> if <code>token</code> may begin a group

 */

public boolean isAnOpeningSymbol(String token)

{

boolean found = false;

for(int i = 0; i < size && !found; i++)

if(symbols[i].openingSymbol

 && symbols[i].openToken.equals(token))

found = true;

return found;

}

/**

 * Identifies {@link java.lang.String} <code>token</code> as being an closing symbol or not.

 * If <code>token</code> is not in the table then a {@link NotATableElementExcepetion}

 * will be thrown (once I get that running.)

 *

 * @param token {@link java.lang.String} to be identified

 * @return <code>true</code> if <code>token</code> may end a group

 */

public boolean isAClosingSymbol(String token)

{

boolean found = false;

for(int i = 0; i < size && !found; i++)

if(!symbols[i].openingSymbol

 && symbols[i].closeToken.equals(token))

found = true;

return found;

}

/**

 * Identifies {@link java.lang.String} <code>token</code> and returns the appropriate

 * {@link GroupingSymbol}.

 * If <code>token</code> is not in the table then a {@link NotATableElementExcepetion}

 * will be thrown (once I get that running.)

 *

 * @param token {@link java.lang.String} to be identified

 * @return the {@link GroupingSymbol} for <code>token</code>.

 */

public GroupingSymbol symbolFor(String token)

{

int index = 0;

boolean found = false;

for(index = 0; index < size && !found; index++)

if(symbols[index].openingSymbol

 && symbols[index].openToken.equals(token))

found = true;

else if(!symbols[index].openingSymbol

 && symbols[index].closeToken.equals(token))

found = true;

if(found)

return symbols[index - 1];

else

return null;

}

/**

 * @return a {@link java.lang.String} array contianing the tokens for the

 * {@link GroupingSymbol GroupingSymbols} in the table.

 */

public String [] getTokens()

{

String [] out = new String [size];

for(int i = 0; i < size; i++)

if(symbols[i].openingSymbol)

out[i] = symbols[i].openToken;

else

out[i] = symbols[i].closeToken;

return out;

}

/**

 * Checks if an infix expression is balanced. An expression has balanced grouping symbols

 * if every grouping symbol that is opened is closed and each closing symbol closes the most

 * recent opening symbol.

 *

 * For example, ((x + y) / 3) * 5 is balanced because there are two open parens '(' and two

 * closes and each close works on the most recently opened symbol. ([x + y] / 3) * 5 is

 * balanced for the same reason, but ([x + y) / 3] * 5 is not because when the closing

 * symbol ')' is reached the current open symbol is ']' and the two don't match. Similarly

 * ([x + y] / 3 * 5 is not valid because there is no close for the initial '('.

 *

 * @param s infix equation to check the balance of

 * @return whether <code>s</code> is balanced or not

 */

public boolean isBalanced(String s)

{

AdaptedStringTokenizer tokens = new AdaptedStringTokenizer(s, getTokens());

String currentToken;

boolean balanced = true;

ExpressionElementStack parens = new ExpressionElementStack();

while(tokens.hasMoreTokens() && balanced)

{

currentToken = tokens.nextToken();

if(isAnOpeningSymbol(currentToken))

parens.push(symbolFor(currentToken));

else if(isAClosingSymbol(currentToken))

if(parens.empty()

 || !((GroupingSymbol)parens.nextElement().content).closeToken.equals(currentToken))

balanced = false;

}

if(!parens.empty())

balanced = false;

return balanced;

}

/*
public boolean balance(String s)

{

AdaptedStringTokenizer tokens = new AdaptedStringTokenizer(s, getTokens());

String currentToken;

boolean balanced = true;

ExpressionElementStack parens = new ExpressionElementStack();

StringBuffer out = new StringBuffer();

StringBuffer holding = new StringBuffer();

GroupingSymbol currentOpenSymbol;

while(tokens.hasMoreTokens() && balanced)

{

currentToken = tokens.nextToken();

if(isAnOpeningSymbol(currentToken))

{

if(currentOpenSymbol != null)

out.append(currentOpenSymbol.token());

currentOpenSymbol = symbolFor(currentToken);

out.append(holding.toString());

holding.clear();

}

else if(isAClosingSymbol(currentToken))

{

if(parens.empty()

 || !currentOpenSymbol.closeToken.equals(currentToken))

;

}

}

if(!parens.empty())

balanced = false;

return balanced;

}

*/}
Source Code for GroupingSymbolTest

/**

 * Driver and test program for {@link GenericGroupingSymbolTable}.

 *

 * @author Will Holcomb

 */

public class GroupingSymbolTest

{

public static void main(String[] args)

{

GroupingSymbolTable g = new GenericGroupingSymbolTable();

String s;

System.out.println("");

for(int i = 0; i < args.length; i++)

{

System.out.println("g.isBalanced(\"" + args[i] + "\") = " + g.isBalanced(args[i]));

System.out.println("");

}

s = new String("((x + 3) * 5)");

System.out.println("g.isBalanced(\"" + s + "\") = " + g.isBalanced(s));

System.out.println("");

s = new String("(({x} + 3) * [5 + 7])");

System.out.println("g.isBalanced(\"" + s + "\") = " + g.isBalanced(s));

System.out.println("");

s = new String("(({x} + 3) * [[5 + 7])");

System.out.println("g.isBalanced(\"" + s + "\") = " + g.isBalanced(s));

System.out.println("");

s = new String("((x) + 3) * 5)");

System.out.println("g.isBalanced(\"" + s + "\") = " + g.isBalanced(s));

System.out.println("");

}

}

Source Code for MovementClawchangeRequest

import java.util.*;

/**

 * Requests that the listener change the openness of the claw.

 *

 * @author Will Holcomb

 */

public class MovementClawchangeRequest extends MovementRequestEvent

{

/**

 * Calls {@link #MovementClawchangeRequest(Object, String)} with an empty

 * {@link String}. This is essentially a request for inaction.

 *

 * @param creator the object which instantiated this class

 */

public MovementClawchangeRequest(Object creator)

{

this(creator, new String(""));

}

/**

 * There is one argument, which is positive for opening the claw and

 * negative to close.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementClawchangeRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.CLAWCHANGE);

numberArguments = 1;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments, ",");

String currentString;

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

else

arg[0] = (new ArithmeticEquation(args.nextToken())).solution();

}

}
Source Code for MovementMovetoRequest

import java.util.*;

/**

 * Requests that the listener move to a specific (X, Y, Z) coordinate.

 *

 * @author Will Holcomb

 */

public class MovementMovetoRequest extends MovementRequestEvent

{

/**

 * There are three arguments (contained in <code>arguments</code>)

 * which is parsed using {@link java.util.StringTokenizer} using comma as

 * the delimiter.

 *

 * The arguments are a position in relation to the X-axis, Y-axis and Z-axis

 * in cartesion coordinates.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementMovetoRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.MOVETO);

numberArguments = 3;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments, ",");

String currentString;

int count = 0;

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

else

while(args.hasMoreElements())

{

arg[count] = (new ArithmeticEquation(args.nextToken())).solution();;

count++;

}

for(;count < numberArguments; count++)

arg[count] = 0;

}

}

Source Code for MovementPickupRequest

import java.util.*;

/**

 * Requests that the listener pick up an object.

 *

 * @author Will Holcomb

 */

public class MovementPickupRequest extends MovementRequestEvent

{

/**

 * There is one argument, which is the identifier of the object

 * to be picked up.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementPickupRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.PICKUP);

numberArguments = 1;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments, ",");

String currentString;

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

else

arg[0] = (new ArithmeticEquation(args.nextToken())).solution();;

}

}

Source Code for MovementReleaseRequest

import java.util.*;

/**

 * Requests that the listener put down any object that it may be holding

 *

 * @author Will Holcomb

 */

public class MovementReleaseRequest extends MovementRequestEvent

{

/**

 * Calls {@link #MovementReleaseRequest(Object, String)} with an empty

 * {@link String}.

 *

 * @param creator the object which instantiated this class

 */

public MovementReleaseRequest(Object creator)

{

this(creator, new String(""));

}

/**

 * This command takes no arguments.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementReleaseRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.RELEASE);

numberArguments = 0;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments);

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

}

}
Source Code for MovementRequestEvent

import java.awt.AWTEvent;

/**

 * This is the class which serves to notify a {@link MovementRequestListener}

 * that a movement has been requested.

 */

public abstract class MovementRequestEvent extends java.awt.AWTEvent

{

/**

 * Simply a placeholder for the beginning of the identifiers

 */

public static final int MOVEMENT_FIRST = AWTEvent.RESERVED_ID_MAX + 1;

/**

 * Signifies that the event is a {@link MovementRotateRequest}.

 */

public static final int ROTATE = MOVEMENT_FIRST;

/**

 * Signifies that the event is a {@link MovementMovetoRequest}.

 */

public static final int MOVETO = MOVEMENT_FIRST + 1;

/**

 * Signifies that the event is a {@link MovementPickupRequest}.

 */

public static final int PICKUP = MOVEMENT_FIRST + 2;

/**

 * Signifies that the event is a {@link MovementReleaseRequest}.

 */

public static final int RELEASE = MOVEMENT_FIRST + 3;

/**

 * Signifies that the event is a {@link MovementClawchangeRequest}.

 */

public static final int CLAWCHANGE = MOVEMENT_FIRST + 4;

/**

 * Signifies that the event is a {@link MovementResetRequest}.

 */

public static final int RESET = MOVEMENT_FIRST + 5;

/**

 * Signifies that the event is a {@link MovementToggleaxisRequest}.

 */

public static final int TOGGLEAXIS = MOVEMENT_FIRST + 6;

/**

 * Simply a placeholder for the end of the identifiers

 */

public static final int MOVEMENT_LAST = MOVEMENT_FIRST + 6;

/**

 * The number of arguments that the command has

 */

public int numberArguments;

/**

 * The arguments to the command

 */

public int [] arg;

/**

 * Simply chains a call up to the superclass using the same information

 *

 * @param source the obsect which created this object

 * @param id the identifier for the type of event

 */

public MovementRequestEvent(Object source, int id)

{

super(source, id);

}

}

Source Code for MovementRequestEventMulticaster

import java.util.EventListener;

/**

 * An event multicaster allows for multiple listeners to be registered for a single

 * broadcaster. The way that it works is this: each event multicaster is itself an

 * event listener and each multicaster sends objects to two listeners. When a

 * listener is added to the multicaster the multicaster adds a second multicaster as

 * its second listener and then that multicaster sets the listenere being added as

 * its first listener (leaving the second slot open for the addition of another

 * multicaster so as to add another listener.

 *

 * Essentially the process is the creation of a chain. When a new link is added to

 * the chain it travels to the end.

 *

 * When an event is broadcast it simply travels down the chain being sent to each listener

 * along the way.

 *

 * @author Will Holcomb

 */

public class MovementRequestEventMulticaster extends java.awt.AWTEventMulticaster

implements MovementRequestListener

{

/**

 * Creates a new multicaster. Recall from the introduction that a is

 * an object wishing to recieve events and the second is simply another

 * multicaster existing to allow chaining.

 *

 * @param a object listening

 * @param b multicaster to chain

 */

protected MovementRequestEventMulticaster(EventListener a, EventListener b)

{

super(a, b);

}

/**

 * Adds a listener <code>a</code> and multicaster <code>b</code> to the list.

 * Remember that a {@link MovementRequestEventMulticaster} is a {@link MovementRequestListener}

 *

 * @param a object listening

 * @param b multicaster to chain

 */

public static MovementRequestListener add

(MovementRequestListener a, MovementRequestListener b)

{

return (MovementRequestListener)(addInternal(a, b));

}

/**

 * Removes a listener <code>a</code> and multicaster <code>b</code> from the list.

 * Remember that a {@link MovementRequestEventMulticaster} is a {@link MovementRequestListener}

 *

 * @param a object listening

 * @param b multicaster

 */

public static MovementRequestListener remove

(MovementRequestListener a, MovementRequestListener b)

{

return (MovementRequestListener)(removeInternal(a, b));

}

protected static EventListener addInternal

(EventListener a, EventListener b)

{

if(a == null)

return b;

else if (b == null)

return a;

else

return new MovementRequestEventMulticaster(a, b);

}

protected EventListener remove(EventListener l)

{

if(l == a)

return b;

else if (l == b)

return a;

else

{

EventListener a2 = removeInternal(a, l);

EventListener b2 = removeInternal(b, l);

if(a == a2 && b == b2)

return this;

else

return addInternal(a2, b2);

}

}

/**

 * This is the implementation which allows this class to implement {@link MovementRequestListener}.

 * A call to this begins the chain.

 *

 * @param e the event to broadcast

 */

public void movementRequested(MovementRequestEvent e)

{

if(a != null)

((MovementRequestListener)a).movementRequested(e);

if(b != null)

((MovementRequestListener)b).movementRequested(e);

}

}

Source Code for MovementRequestListener

/**

 * Represents that a class has the capacity to process {@link MovementRequestEvent MovementRequestEvents}.

 *

 * @author Will Holcomb

 */

public interface MovementRequestListener extends java.util.EventListener

{

public abstract void movementRequested(MovementRequestEvent e);

}

Source Code for MovementResetRequest

import java.util.*;

/**

 * Requests that the listener reset to a default position

 *

 * @author Will Holcomb

 */

public class MovementResetRequest extends MovementRequestEvent

{

/**

 * Calls {@link #MovementResetRequest(Object, String)} with an empty

 * {@link String}.

 *

 * @param creator the object which instantiated this class

 */

public MovementResetRequest(Object creator)

{

this(creator, new String(""));

}

/**

 * This command takes no arguments.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementResetRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.RESET);

numberArguments = 0;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments);

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

}

}

Source Code for MovementRotateRequest

import java.util.*;

/**

 * Requests that the listener rotate its joints.

 *

 * @author Will Holcomb

 */

public class MovementRotateRequest extends MovementRequestEvent

{

/**

 * Calls {@link #MovementRotateRequest(Object, String)} with an empty

 * {@link String}. This is essentially a request for inaction.

 *

 * @param creator the object which instantiated this class

 */

public MovementRotateRequest(Object creator)

{

this(creator, new String(""));

}

/**

 * There are six arguments (contained in <code>arguments</code>)

 * which is parsed using {@link StringTokenizer} using comma as

 * the delimiter.

 *

 * The arguments are a series of rotations for each of 6 joints. If

 * there are not enough arguments then the remaining ones are filled

 * with zeroes.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementRotateRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.ROTATE);

numberArguments = 6;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments, ",");

String currentString;

int count = 0;

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

else

while(args.hasMoreElements())

{

arg[count] = (new ArithmeticEquation(args.nextToken())).solution();

count++;

}

for(;count < numberArguments; count++)

arg[count] = 0;

}

}

Source Code for MovementToggleaxisRequest

import java.util.*;

/**

 * Requests that a listener toggle a coordinate axis for one of its joints.

 *

 * @author Will Holcomb

 */

public class MovementToggleaxisRequest extends MovementRequestEvent

{

/**

 * There is one argument, which is the joint to be toggle the

 * axis on.

 *

 * @param creator the object which instantiated this class

 * @param arguments the arguments which are to be processed

 */

public MovementToggleaxisRequest(Object creator, String arguments)

{

super(creator, MovementRequestEvent.TOGGLEAXIS);

numberArguments = 1;

arg = new int[numberArguments];

StringTokenizer args = new StringTokenizer(arguments);

if(args.countTokens() > numberArguments)

System.out.println("Too many arguments in line \""

 + arguments + "\"");

else

arg[0] = (new ArithmeticEquation(args.nextToken())).solution();;

}

}

Source Code for MultiplicationOperator

/**

 * This represents the operator * in an arithmetic equation; as in 3 * 5 = 15.

 *

 * @author Will Holcomb

 */

public class MultiplicationOperator extends Operator

{

/**

 * Creates an {@link Operator} with:

 *

 *
token: *

 *
 precedence: 2

 *
numberOperands: 2

 *
preceededByAnOperand: true

 *

 */

public MultiplicationOperator()

{

token = new String("*");

precedence = 2;

numberOperands = 2;

preceededByAnOperand = true;

}

/**

 * @param x[] the operands

 * @return x[0] * x[1]

 */

public int operate(int [] x)

{

int solution;

if(x.length == numberOperands)

solution = x[0] * x[1];

else

{

System.out.println("Error in \"" + token + "\"");

solution = 0;

}

return solution;

}

}

Source Code for NegationOperator

/**

 * This represents the binary operator - in an arithmetic equation; as in -(3) = -3.

 *

 * @author Will Holcomb

 */

public class NegationOperator extends Operator

{

/**

 * Creates an {@link Operator} with:

 *

 *
token: -

 *
 precedence: 1

 *
numberOperands: 1

 *
preceededByAnOperand: false

 *

 */

public NegationOperator()

{

token = new String("-");

precedence = 1;

numberOperands = 1;

preceededByAnOperand = false;

}

/**

 * @param x[] the operands

 * @return -x[0]

 */

public int operate(int [] x)

{

int solution;

if(x.length == numberOperands)

solution = -x[0];

else

{

System.out.println("Error in \"" + token + "\"");

solution = 0;

}

return solution;

}

}

Source Code for Operator

/**

 * Class representing the concept of an operator in an equation. For example, in

 * X + 3 = Y X, 3 and Y are operands representing values whereas + and = are operators

 * representing actions to be performed on the operands.

 */

public abstract class Operator

{

/**

 * The token representing the operation in an equation.

 */

public String token;

/**

 * The precedence of the operator. In equations different operators can have

 * an order of operations defined; for instance in normal arithmetic operations

 * there are the basic operators + (addition), - (subtraction), * (multiplication),

 * and / (division). There is an order of operations which states that all

 * multiplication and division is performed before any addition or subtraction.

 * <i>This is ignoring the concept of grouping symbols such as parenthesis.</i>

 * All multipliaction and division is performed left to right and then all addition

 * and subtraction is performed left to right. This could be expanded to a more

 * operators; each time the highest order of precedence is performed left to

 * right until none of that operator remain, then the same is repeated for the next

 * lower precedence until eventually there is but a single value left.

 */

public int precedence;

/**

 * The number of operands that the operator acts on.

 */

public int numberOperands;

/**

 * Flag allowing for the contextualization of operators. It is the case sometimes

 * that in an equation the same symbol may represent more than one operator.

 * For instance in arithmetic the - represents both subtration 3 - 5 and negation

 * -2. Which action is intended by the writer is known by the reader of the equation

 * based upon the context where it appears. In 3 - 5 = -2 it is known that the first

 * - is a minus because it is preceeded by 3 and the second is negation becasue it

 * is preceeded by a =.

 */

public boolean preceededByAnOperand;

/**

 * Abstact method that all operators must implement. This represents the operator

 * acting upon a series of operands.

 *

 * @return the new operand produced by the operation

 */

public abstract int operate(int [] x);

/**

 * @param o an operator to be compared to this one

 *

 * @return <code>true</code> if this operator is of higher precedence

 */

public boolean isHigherPrecedence(Operator o)

{

return precedence < o.precedence;

}

/**

 * @param o an operator to be compared to this one

 *

 * @return <code>true</code> if this operator is of lower precedence

 */

public boolean isLowerPrecedence(Operator o)

{

return precedence > o.precedence;

}

/**

 * @return the token for the current operator

 */

public String toString()

{

return token;

}

}

Source Code for OperatorTable

/**

 * Much like {@link GroupingSymbolTable} this call serves as a holder for a set of other objects

 * and acts as an interface to allow use of them. In this case the objects are

 * {@link Operator Operators}.

 *

 * The most common usage of {@link OperatorTable} is {@link ArithmeticOperatorTable}.

 *

 * @author WillHolcomb

 */

public class OperatorTable

{

/**

 * The current maximum number of elements possible

 */

protected int capacity = 0;

/**

 * The current number of elements

 */

protected int size = 0;

/**

 * The elements contained in the table

 */

protected Operator [] operators;

/**

 * Creates a new empty table with a capacity of 20 elements

 */

public OperatorTable()

{

this(20);

}

/**

 * Creates a new empty table with a capacity of i elements.

 * If i is 0 then the capacity is set to 1.

 */

public OperatorTable(int i)

{

capacity = i;

if(capacity == 0)

capacity++;

operators = new Operator[capacity];

}

/**

 * Adds an {@link Operator} to the table. If there is not room in the table for

 * the symbol then (in the fashion of {@link java.util.Vector}) the capacity is

 * doubled thereby making space.

 *

 * @param o symbol to be added

 */

public void add(Operator o)

{

if(size == capacity)

{

Operator[] tempTable = new Operator[capacity * 2];

for(int i = 0; i < size; i++)

tempTable[i] = operators[i];

operators = tempTable;

capacity *= 2;

}

operators[size] = o;

size++;

}

/**

 * Identifies {@link java.lang.String} <code>token</code> as being an

 * {@ Operator} in the table or not based on the context given by

 * <code>preceededByAnOperand</code>.

 *

 * @param token {@link java.lang.String} to be identified

 * @return <code>true</code> if <code>token</code> is in the table

 */

public boolean isAnOperator(String token, boolean preceededByAnOperand)

{

boolean found = false;

for(int i = 0; i < size && !found; i++)

{

if(operators[i].token.equals(token)

 && operators[i].preceededByAnOperand == preceededByAnOperand)

found = true;

}

return found;

}

/**

 * Identifies {@link java.lang.String} <code>token</code> and returns the appropriate

 * {@link Operator}.

 * If <code>token</code> is not in the table then a {@link NotATableElementExcepetion}

 * will be thrown (once I get that running.)

 *

 * @param token {@link java.lang.String} to be identified

 * @return the {@link Operator} for <code>token</code>.

 */

public Operator operatorFor(String token, boolean preceededByAnOperand)

{

int index = 0;

boolean found = false;

for(index = 0; index < size && !found; index++)

if(operators[index].token.equals(token)

 && operators[index].preceededByAnOperand == preceededByAnOperand)

found = true;

if(found)

return operators[index - 1];

else

return null;

}

/**

 * @return a {@link java.lang.String} array contianing the tokens for the

 * {@link Operator Operators} in the table.

 */

public String [] getTokens()

{

String [] out = new String [size];

for(int i = 0; i < size; i++)

out[i] = operators[i].token;

return out;

}

}
Source Code for ParserTest

import java.awt.*;

import com.sun.j3d.utils.applet.MainFrame;

import java.awt.event.*;

/**

 * This is a driver program to test the {@link VALIIParser} class.

 *

 * @author Will Holcomb

 */

public class ParserTest extends java.applet.Applet implements MovementRequestListener

{

protected Button parseButton = new Button("Parse");

protected VALIIParser parser = new VALIIParser();

public void init()

{

parseButton.addActionListener(new ActionListener()

 {

public void actionPerformed(ActionEvent e)

{

parser.processProgram();

}

 });

parser.addMovementRequestListener(this);

add(parser);

add(parseButton);

}

public static void main(String[] args)

{

new MainFrame(new ParserTest(), 700, 700);

}

/**

 * Required for the implementation of {@link MovementRequestListener}. All that this

 * does is dump the nature and arguments of <code>e</code> to {@link System#out}.

 */

public void movementRequested(MovementRequestEvent e)

{

if(e.getID() == MovementRequestEvent.ROTATE)

{

System.out.print("Rotate request for ");

for(int i = 0; i < e.numberArguments; i++)

System.out.print(e.arg[i] + " ");

System.out.println("");

}

else if(e.getID() == MovementRequestEvent.MOVETO)

{

System.out.print("Moveto request for ");

for(int i = 0; i < e.numberArguments; i++)

System.out.print(e.arg[i] + " ");

System.out.println("");

}

else if(e.getID() == MovementRequestEvent.PICKUP)

{

System.out.print("Pickup request for ");

for(int i = 0; i < e.numberArguments; i++)

System.out.print(e.arg[i] + " ");

System.out.println("");

}

else if(e.getID() == MovementRequestEvent.RELEASE)

{

System.out.print("Release request for ");

for(int i = 0; i < e.numberArguments; i++)

System.out.print(e.arg[i] + " ");

System.out.println("");

}

else if(e.getID() == MovementRequestEvent.CLAWCHANGE)

{

System.out.print("Clawchange request for ");

for(int i = 0; i < e.numberArguments; i++)

System.out.print(e.arg[i] + " ");

System.out.println("");

}

else if(e.getID() == MovementRequestEvent.RESET)

{

System.out.print("Reset request for ");

for(int i = 0; i < e.numberArguments; i++)

System.out.print(e.arg[i] + " ");

System.out.println("");

}

else

System.out.println("Request for unknown movement type");

}

}
Source Code for PostfixExpression

import java.util.*;

/**

 * Represents a postfix equation. Equations are commonly of one of three types:

 * infix, postfix, or prefix. The different types have to do with the placement

 * of the operators in relation to the operands. In infix, X + Y, the operator +

 * is in between the operands that it operates on X and Y. In prefix, + X Y, the

 * operator + preceedes the operands X and Y. In postfix, which this class represents,

 * in X Y + the operator + postcedes the operators X and Y. So, + X Y (prefix) is the

 * same as X + Y (infix) is the same as X Y + (postfix).

 *

 * Postfix notation, unlike infix does not use any grouping symbols. Any equation may

 * be represented because also unlike infix notation there is no order of operations;

 * an operation is preformed when it is reached.

 *

 * For more information on postfix equations, specifically how to solve them, see the

 * documentation for the {@link #solution} method.

 *

 * @author Will Holcomb

 */

public abstract class PostfixExpression implements Equation

{

/**

 * Stack representing a postfix equation. The top element is the beginning of the

 * equation.

 */

protected ExpressionElementStack expression;

/**

 * Table of the allowed operators for this equation. This class is used both to

 * parse the incoming infix expression in {@link #setEquation} and then to find

 * the solution in {@link #solution}.

 *

 * The most commonly used subclass that is used here is {@link ArithmeticOperatorTable}

 * though {@link ConditionalOperatorTable} does as well.

 */

OperatorTable op;

/**

 * Table of the allowed grouping symbols for the equation.

 *

 * The most common subclass used here is {@link GenericGroupingSymbolTable}.

 */

GroupingSymbolTable gt;

/**

 * flag which toggles a set of dumps of the different stacks. This information can

 * be used for debugging. The dumps go to {@link java.lang.System#out}.

 */

protected boolean TESTING = false;

/**

 * String representing the infix form of the current expression.

 */

String infixString;

/**

 * This constructor does nothing whatsoever. It is necessary so that subclasses

 * may call it, the class will not function however unless the subclass generates

 * an {@link ExpressionElementStack} and calls {@link #setEquation}.

 */

protected PostfixExpression()

{

}

/**

 * This method sets the content of the expression. The algorithm used to translate

 * an infix expression (which the {@link ExpressionElementStack} infixExpression

 * represents) to a postfix one is this: (for an explanation of the difference

 * between infix and postfix see the introduction to this class.)

 *

 * <code>

 *

 *

 *
 input stack SI which is a stack of {@link ExpressionElement ExpressionElements}

 *
 representing an infix equation

 *

 *
 create a new {@link ExpressionElementStack} SP representing the new postfix

 *
 expression.

 *

 *
 Create a new {@link ExpressionElementStack} SO to hold operators temporarily

 *

 *
 while SI is not empty

 *

 *

 *

 if the top of SI is an operator

 *

 *

 *

 while SO is not empty and the top of SO is of equal or higher

 *

 precedence than the top of SI

 *

 *

pop SO and place the operator on SP

 *

 *

 *

pop SI and place the operator on SO

 *

 *

 *

 *

 else if the top of SI is a gropuping symbol

 *

 *

 *

 if the top of SI is an opening symbol

 *

 pop SI and push the grouping symbol on SO

 *

 *

 *

 else

 *

 *

 *

 while SO is not empty and the top of SO is not the closing symbol

 *

 for the top of SI

 *

 *

pop SO and place the operator on SP

 *

pop SI and throw away the closing symbol

 *

 *

 *

 *

 *

 *

 *

 else

 *

 pop SI and place the variable or value in SP

 *

 *

 *

 *

 *

while SO is not empty

 *

pop SO and push the operator on SP

 *

 *

 *

 * SP now contains the expression elements in the proper order for a postfix version of SI

 * </code>

 *

 * For information on how an infix expression stack is generated see

 * {@link ArithmeticEquation#ArithmeticEquation}.

 *

 * For information about how a postfix expression is solved by a computer see the {@link #solution}

 * method of this class.

 *

 * @param infixExpression stack representing an infix expression

 */

public void setEquation(ExpressionElementStack infixExpression)

{

expression = new ExpressionElementStack();

ExpressionElement currentElement;

ExpressionElement tempElement;

ExpressionElementStack operatorStack = new ExpressionElementStack();

if(TESTING)

infixExpression.dump();

while(!infixExpression.empty())

{

currentElement = infixExpression.nextElement();

if(TESTING)

System.out.println("I get here; processing: \"" + currentElement.toString() + "\"");

switch(currentElement.type)

{

case (ExpressionElement.OPERATOR):

while(!operatorStack.empty()

 && operatorStack.top().type != ExpressionElement.GROUPING_SYMBOL

 && ((Operator)currentElement.content).isLowerPrecedence((Operator)operatorStack.top().content))

expression.push(operatorStack.nextElement());

operatorStack.push(currentElement);

break;

case (ExpressionElement.GROUPING_SYMBOL):

if(((GroupingSymbol)currentElement.content).isAnOpeningSymbol())

{

operatorStack.push(currentElement);

}

else

{

boolean closed = false;

while(!operatorStack.empty() && !closed)

{

tempElement = operatorStack.nextElement();

if(tempElement.type == ExpressionElement.OPERATOR)

{

expression.push(tempElement);

}

else if(tempElement.type == ExpressionElement.GROUPING_SYMBOL)

{

if(((GroupingSymbol)tempElement.content).isCloseFor

 (((GroupingSymbol)currentElement.content)))

closed = true;

else

System.out.println("All is not well in the grouping world.");

}

}

}

break;

case (ExpressionElement.VALUE): case (ExpressionElement.VARIABLE):

expression.push(currentElement);

break;

case (ExpressionElement.OTHER): default:

System.out.println("Error in postfix parsing: " + currentElement.typeString());

break;

}

}

while(!operatorStack.empty())

{

currentElement = operatorStack.nextElement();

if(currentElement.type == ExpressionElement.OPERATOR)

{

expression.push(currentElement);

}

else

{

System.out.println("Error in operator stack of postfix parsing:");

System.out.println("\t" + currentElement.typeString());

}

}

}

/**

 * This method returns the solution for the equation. The method that it used to compute the

 * solution is this:

 * <code>

 *

 *

 *
 input the expression (in this case, the expression is an {@link Enumeration}

 *
 of {@link ExpressionElementStack} {@link #expression};) called SI

 *

 *

 *
 begin a new temporary {@link ExpressionElementStack} to hold the work on the

 *
 solution; called SO

 *

 *
while the input stack (SI) has more elements

 *

 *

if the top of SI is a {@link Variable}

 *

 *

pop SI

 *

find the value for the variable

 *

push that value on SO

 *

 *

else if the top of SI is a {@link java.lang.Integer}

 *

 *

pop SI

 *

push that value on SO

 *

 *

else if the top of SI is an {@link Operator}

 *

 *

pop SI

 *

 *

 pop SO enough times to get the number of operands needed

 *

 to allow the operator taken off of SI to process

 *

 *

operate on the operands popped

 *

push the solution on SO

 *

 *

 *

 * </code>

 *

 * Once this code is through processing then SO should contain a single value which is

 * equal to the solution to the expression. If there is more than one value or if at any

 * time an attempt is made to pop an empty stack then there was an error in the format

 * of the equation.

 *

 * The function currently returns 0 in the case of an error though soon it will throw

 * an {@link InvalidExpressionException}.

 *

 * @return the integer solution to the postfix expression

 */

public int solution()

{

Enumeration elements = expression.elements();

ExpressionElement currentElement;

ExpressionElementStack numberStack = new ExpressionElementStack();

while(elements.hasMoreElements())

{

currentElement = (ExpressionElement)elements.nextElement();

switch(currentElement.type)

{

case (ExpressionElement.VALUE):

numberStack.push(currentElement);

break;

case (ExpressionElement.VARIABLE):

numberStack.push(new ExpressionElement(new Integer(

 ((Variable)currentElement.content).valueOf())));

break;

case (ExpressionElement.OPERATOR):

if(numberStack.size() >= ((Operator)currentElement.content).numberOperands)

{

int [] x = new int[((Operator)currentElement.content).numberOperands];

for(int i = ((Operator)currentElement.content).numberOperands - 1; i >= 0; i--)

x[i] = ((Integer)numberStack.nextElement().content).intValue();

numberStack.push(new ExpressionElement(new Integer(

 ((Operator)currentElement.content).operate(x))));

break;

}

case (ExpressionElement.OTHER): default:

System.out.println("Class is " + currentElement.getClass().getName());

System.out.println("Error in postfix solution -- unknown element type: "

 + currentElement.typeString());

break;

}

if(TESTING)

numberStack.dump();

}

if(numberStack.size() != 1)

{

System.out.print("Error dump (wrong stack size) -- ");

numberStack.dump();

return 0;

}

else

return ((Integer)numberStack.nextElement().content).intValue();

}

/**

 * @return a string representing the infix form of the postfix equation

 */

public String infixEquation()

{

return infixString;

}

/**

 * @return a string representing the infix form of the postfix equation

 */

public String toString()

{

return infixString;

}

}
Source Code for SineOperator

/**

 * This represents the operator sin in an arithmetic equation.

 * It returns the trigonometric sine.

 *

 * @author Will Holcomb

 */

public class SineOperator extends Operator

{

/**

 * Creates an {@link Operator} with:

 *

 *
token: sin

 *
 precedence: 2

 *
numberOperands: 1

 *
preceededByAnOperand: false

 *

 */

public SineOperator()

{

token = new String("sin");

precedence = 2;

numberOperands = 1;

preceededByAnOperand = false;

}

/**

 * @param x[] the operands in degrees

 * @return (int){@link Math#sin Math.sin}(x[0])

 */

public int operate(int [] x)

{

int solution = 0;

if(x.length == numberOperands)

solution = (int)Math.sin(Math.toRadians(x[0]));

else

solution = 0;

return solution;

}

}

Source Code for SubtractionOperator

/**

 * This represents the operator - in an arithmetic equation; as in 3 - 5 = -2.

 *

 * @author Will Holcomb

 */

public class SubtractionOperator extends Operator

{

/**

 * Creates an {@link Operator} with:

 *

 *
token: -

 *
 precedence: 3

 *
numberOperands: 2

 *
preceededByAnOperand: true

 *

 */

public SubtractionOperator()

{

token = new String("-");

precedence = 3;

numberOperands = 2;

preceededByAnOperand = true;

}

/**

 * @param x[] the operands

 * @return x[0] - x[1]

 */

public int operate(int [] x)

{

int solution;

if(x.length == numberOperands)

solution = x[0] - x[1];

else

{

System.out.println("Error in \"" + token + "\"");

solution = 0;

}

return solution;

}

}

Source Code for TokenizerTest

import java.util.*;

/**

 * This is a driver program to test the {@link AdaptedStringTokenizer} class.

 *

 * @author Will Holcomb

 */

public class TokenizerTest

{

public static void main(String[] agrs)

{

String i = new String("5 <= 3");

StringTokenizer s = new StringTokenizer(i, "<<=>>==! ", true);

while(s.hasMoreTokens())

System.out.println("\"" + s.nextToken() + "\"");

String [] tokens = new String [7];

tokens[0] = new String("<");

tokens[1] = new String("<=");

tokens[2] = new String(">");

tokens[3] = new String(">=");

tokens[4] = new String("==");

tokens[5] = new String("!=");

tokens[6] = new String("!");

s = new AdaptedStringTokenizer(i, tokens, true);

while(s.hasMoreTokens())

System.out.println("\"" + s.nextToken() + "\"");

}

}

Source Code for VALIIParser

import java.awt.*;

import java.util.*;

/**

 * This class is the culmination of all of these other classes. It is an extension

 * of {@link TextArea} and when the {@link #processProgram} method is called the

 * contents of of the {@link textArea} sre processed and events are thrown to

 * any registered listeners.

 *

 * @author Will Holcomb

 */

public class VALIIParser extends java.awt.TextArea

{

/**

 * The listener for any events generated

 */

protected MovementRequestListener listener;

/**

 * By default a {@link TextArea} of height 30 and width 20 is created

 * with only vertical scroll bars and no text.

 */

public VALIIParser()

{

super("", 20, 30, TextArea.SCROLLBARS_VERTICAL_ONLY);

}

/**

 * Creates a {@link TextArea} of height <code>rows</code> and width

 * <code>cols</code> and only vertical scrool bars.

 *

 * @param rows the number of rows

 * @param cols the number of columns

 */

public VALIIParser(int rows, int cols)

{

super("", rows, cols, TextArea.SCROLLBARS_VERTICAL_ONLY);

}

/**

 * Very simply this method does the processing of the text and generates the

 * appropriate events. The algorithm at this point is extremely simple:

 *

 * The recognized keywords are:

 *

 *
rotate

 *
moveto

 *
reset

 *
toggleaxis

 *
pickup

 *
release</l>

 *
clawchange

 *

 *

 * All that his function is this:

 * <code>

 *

 *

 *
 tokenize the entire program using {@link StringTokenizer} with '\n'

 *
 as the delimiter thereby processing the program line by line

 *

 *
while there are strings remaining in the tokenizer

 *

 *

remove whitespace from the begninning and end of the string

 *

change the string to lowercase

 *

check to see if the string begins with any of the keywords

 *

if the string begins with one of the keywords

 *

 *

 *

 intialize the appropriate event with the remainder of the

 *

 string other than the keyword

 *

 *

 *

 throw the event; that is send it to

 *

 {@link MovementRequestListener#movementRequested movementRequested}

 *

 in the registered listener (which may in fact be more than one

 *

 listener through the use of {@link MovementRequestEventMulticaster}.

 *

 *

 *

 *

 otherwise print an error messge to {@link System#out} (this will become a

 *

 throw of an{@link InvalidProgramElement}

 *

 *

 *

 * </code>

 *

 * The method of the processing makes it so that each line of the program is one command

 * (tokenizing according to '\n') and it is case insensitive (calling {@link String#toLowercase}

 * before checking for any keywords.

 *

 */

public void processProgram()

{

if(listener == null)

return;

StringTokenizer byLine = new StringTokenizer(getText(), "\n");

String keyword;

String currentString;

int lineCount = 0;

MovementRequestEvent currentRequest = new MovementRotateRequest(this);

boolean identified = false;

while(byLine.hasMoreElements())

{

lineCount++;

identified = false;

currentString = byLine.nextToken();

currentString = currentString.trim();

currentString = currentString.toLowerCase();

keyword = new String("rotate");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementRotateRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("moveto");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementMovetoRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("pickup");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementPickupRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("release");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementReleaseRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("clawchange");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementClawchangeRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("reset");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementResetRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("toggleaxis");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

try

{

currentRequest = new MovementToggleaxisRequest(this,

 currentString.substring(keyword.length()));

}

catch(NumberFormatException e)

{

System.out.println(lineCount + ": " + "\"" + e.toString() + "\" is not a valid angle measure");

}

}

keyword = new String("assign");

if(!identified && currentString.startsWith(keyword))

{

identified = true;

currentString = currentString.substring(keyword.length());

currentString = currentString.trim();

Variable.dereferencer().assign(currentString.substring(0,

 currentString.indexOf(' ')), new ArithmeticEquation(

 currentString.substring(currentString.indexOf(' ') + 1)).solution());

}

if(!identified)

System.out.println(lineCount + ": " + "\"" + currentString + "\" unknown command");

else

listener.movementRequested(currentRequest);

}

}

/**

 * Clears the contents of the text box.

 */

public void clear()

{

setText("");

}

/**

 * Adds a listener to the events generated by {@link #processProgram}.

 *

 * @param l a listener

 */

public synchronized void addMovementRequestListener(MovementRequestListener l)

{

listener = MovementRequestEventMulticaster.add(listener, l);

}

/**

 * Removes a listener to the events generated by {@link #processProgram}.

 *

 * @param l a listener

 */

public synchronized void removeMovementRequestListener(MovementRequestListener l)

{

listener = MovementRequestEventMulticaster.remove(listener, l);

}

}

Source Code for Variable

/**

 * The <code>Variable</code> class allows the user to represent a mathematical variable.

 * A variable has a name and a value. For example, X + 3 * X = Y is a mathematical equation.

 * The characters X and Y are mathematical variables which represent numeric values.

 * Similarly, density = mass / volume is a mathematical equation with the variables density,

 * mass and volume. Because in the equation Z = (X + 3) * X the two X's are not in fact

 * different variables, but represent different references to the same value, each <code>

 * Variable</code> object does not maintain its own value. Rather there is a static member

 * {@link VariableDereferencer VariableDereferencer} <code>de</code> which maintains a list of all

 * variable names and maintains a value for each.

 *

 * @author Will Holcomb

 */

public class Variable

{

/**

 * An object which stores the values of the variables.This in an implementer of

 * {@link VariableDereferencer VariableDereferencer} which stores the values

 * for all of the variables.

 */

protected static VariableDereferencer d;

/**

 * The name of the variable in the dereferencer.

 */

public String name;

/**

 * A default constructor. By default a variable exists only as a reference.

 * It has no name and no value.

 */

public Variable()

{

this(null);

}

/**

 * Instantiates a variable with just a name. If a variable is instantiated without

 * a value specified its value is to set to 0.

 *

 * @param s a string representing the name of the variable

 */

public Variable(String s)

{

name = s;

if(d == null)

setDereferencer();

if(name != null)

d.add(s);

}

/**

 * This contructor allows a variable to be given an intial value. If a variable has

 * already been created with the same name then that value will be overwritten in the

 * dereferncer. There may only be one variable with a given name.

 *

 * @param s a string representing the name of the variable

 * @param value an initial value for the variable

 */

public Variable(String s, int value)

{

name = s;

if(d == null)

setDereferencer();

if(name != null)

d.assign(name, value);

}

/**

 * Returns the current value of the variable. If the variable has no name or if there

 * is no dereferencer set then it returns 0. This will eventually be replaced with a

 * {@link VariableNotFoundException VariableNotFoundException}.

 *

 * @return value of the current variable

 */

public int valueOf()

{

if(d != null && name != null)

return d.dereference(name);

else

return 0;

}

/**

 * Returns the same as {@link #valueOf}. Added to make the {@link Variable}

 * useable in a similar contect to {@link Integer}.

 *

 * @return {@link #valueOf}

 */

public int intValue()

{

return valueOf();

}

/**

 * Returns the hash code from {@link java.lang.String#hashCode() String} for the name

 * of the current <code>Variable</code>.

 *

 * @see java.lang.String#hashCode()

 * @return interger useful for implementing a hash table

 */

public int hashCode()

{

return name.hashCode();

}

/**

 * Assigns a value to the reference in the {@link VariableDereferencer VariableDereferencer}

 * with the same name as the current name. If the name is not found in the dereferencer

 * then a new {@link VariableReference VariableReference} is added and new value assigned.

 *

 * @param i value to be assigned

 */

public void setValue(int i)

{

if(d != null && name != null)

d.assign(name, i);

}

/**

 * This sets the object which is responsible for storing the values of the variables

 * and returning them. {@link VariableDereferencer VariableDereferencer} is an interface

 * and any object may implement it. By default the variable dereferencer is set to be a

 * {@link VariableTable VariableTable}.

 */

public static void setDereferencer()

{

d = new VariableTable();

}

/**

 * This sets the object which is responsible for storing the values of the variables

 * and returning them. {@link VariableDereferencer VariableDereferencer} is an interface

 * and any object may implement it.

 *

 * @param de class implementing {@link VariableDereferencer VariableDereferencer} to store variable values

 */

public static void setDereferencer(VariableDereferencer de)

{

d = de;

}

/**

 * A {@link Variable Variable} operates along the same lines as an integer variable in C. If

 * the value is 0 then it is considered <code>false</code>, otherwise it is considered

 * <code>true</code>.

 *

 * @return the boolean representation of the current value

 */

public boolean isTrue()

{

return valueOf() != 0;

}

/**

 * A {@link Variable Variable} operates along the same lines as an integer variable in C. If

 * the value is 0 then it is considered <code>false</code>, otherwise it is considered

 * <code>true</code>.

 *

 * @return the inverse of the boolean representation of the current value

 */

public boolean isFalse()

{

return valueOf() == 0;

}

/**

 * Returns a {@link java.lang.String string} containing the name of the variable followed by its value.

 *

 * @return String of the form: <i>name</i>: [<i>value</i>]

 */

public String toString()

{

return (name + ": [" + valueOf() + "]");

}

/**

 * @return the current {@link VariableDereferencer VariableDereferencer}

 */

public static VariableDereferencer dereferencer()

{

if(d == null)

setDereferencer();

return d;

}

}
Source Code for VariableDereferencer

/**

 * Interface implemented by any object which wishes to be able to store variable

 * values. This class may work in conjunction with {@link Variable} to maintain a

 * single list of all the variable names and values.

 *

 * The basic concept is that the implementing class keeps a list of variable names

 * and associated values and gives the user access to those values.

 *

 * @author Will Holcomb

 */

public interface VariableDereferencer

{

/**

 * The class implementing this should be able to return the value

 * associated with <code>name</code>.

 *

 * @param name variable to return the value of

 */

public abstract int dereference(String name);

/**

 * Should allow the user to assign the value of <code>value</code>

 * to the variable of <code>name</name>.

 *

 * @param name variable to assign to

 * @param value value to be assigned to <code>name</code>

 */

public abstract void assign(String name, int value);

/**

 * Add a variable with name <code>name</code> to the dereferencer.

 * The implementer should be wary of having multiple variables with

 * the same name becasue of potential lost data.

 *

 * @param name variable to add

 */

public abstract void add(String name);

/**

 * Adds a mark to the table. If the table is later {@link #demark demarked}

 * all variables added since the last mark should be removed.

 */

public abstract void mark();

/**

 * Remove all variables added to the table since the last {@link #mark}

 */

public abstract void demark();

/**

 * @param s variable name to check for existence

 * @return whether a variable with name <code>s</code> is in the

 * dereferencer

 */

public abstract boolean exists(String s);

}

Source Code for VariableReference

/**

 * The primary purpose of this class is to serve as an entry in {@link VariableTable}.

 *

 * @author Will Holcomb

 */

public class VariableReference

{

/**

 * The name of the variable

 */

public String name;

/**

 * The value of the variable

 */

public int value;

/**

 * Calls {@link #VariableReference(String, int)} with <code>s</code> and

 * 0. Thereby making the default value for a {@link VariableReference} 0.

 *

 * @param s <code>name</code> for the reference

 */

public VariableReference(String s)

{

this(s, 0);

}

/**

 * @param s <code>name</code> for the reference

 * @param i <code>value</code> for the reference

 */

public VariableReference(String s, int i)

{

name = s;

value = i;

}

}
Source Code for VariableTable

/**

 * The {@link VariableTable} class acts in conjunction with the {@link Variable}

 * class. For an introduction as to the nature of this relationship see the

 * introduction to {@link Variable}.

 *

 */

public class VariableTable implements VariableDereferencer

{

/**

 * The current maximum number of elements possible

 */

protected int capacity = 0;

/**

 * The current number of elements

 */

protected int size = 0;

/**

 * The elements contained in the table

 */

protected VariableReference [] variables;

/**

 * The current maximum number of marks possible

 *

 * @see #mark

 */

protected int marksCapacity = 0;

/**

 * The current number of marks

 *

 * @see #mark

 */

protected int marksSize = 0;

/**

 * The set of marks in the table

 *

 * @see #mark

 */

int[] marks;

/**

 * Creates a new empty table with a capacity of 20 elements

 */

public VariableTable()

{

this(20);

}

/**

 * Creates a new empty table with a capacity of i elements.

 * If i is 0 then the capacity is set to 1.

 */

public VariableTable(int i)

{

capacity = i;

if(capacity == 0)

capacity++;

variables = new VariableReference[capacity];

marksCapacity = 5;

marks = new int [marksCapacity];

}

/**

 * Adds a {@link VariableReference} to the table. If there is not room in the table for

 * the symbol then (in the fashion of {@link java.util.Vector}) the capacity is

 * doubled thereby making space.

 *

 * @param o reference to be added

 */

public void add(VariableReference v)

{

if(size == capacity)

{

VariableReference[] tempTable = new VariableReference[capacity * 2];

for(int i = 0; i < size; i++)

tempTable[i] = variables[i];

variables = tempTable;

capacity *= 2;

}

variables[size] = v;

size++;

}

/**

 * If <code>s</code> isn't already in the table, a new {@link VariableReference}

 * with a name <code>s</code> and value 0 is added.

 *

 * @param s name of a variable to add

 */

public void add(String s)

{

if(!isInTable(s))

add(new VariableReference(s, 0));

}

/**

 * Assigns <code>value</code> to the reference of <code>name</code>. If there is no

 * reference of <code>name</code> in the table then a new one is added with a value of

 * <code>value</code>.

 *

 * @param name the name of the variable

 * @param value the value to set <code>name</code> equal to

 */

public void assign(String name, int value)

{

boolean assigned = false;

for(int i = 0; i < size && !assigned; i++)

if(variables[i].name.equalsIgnoreCase(name))

{

variables[i].value = value;

assigned = true;

}

if(!assigned)

add(new VariableReference(name, value));

}

/**

 * Checks to see if there is a variable with name <code>s</code> in the table

 *

 * @return <code>true</code> if <code>s</code> is in the table

 */

public boolean isInTable(String s)

{

boolean found = false;

for(int i = 0; i < size && !found; i++)

if(variables[i].name.equalsIgnoreCase(s))

found = true;

return found;

}

/**

 * Same as {@link #isInTable}

 *

 * @return the same as {@link #isInTable}

 */

public boolean exists(String s)

{

return isInTable(s);

}

/**

 * Returns the value for the variable with name of <code>name</code>.

 * If <code>name</code> is not in the table then a

 * {@link NotATableElementExcepetion} will be thrown.

 *

 * @param name variable name to derefernce

 */

public int dereference(String name)

{

for(int i = 0; i < size; i++)

if(variables[i].name.equalsIgnoreCase(name))

return variables[i].value;

return 0;

}

/**

 * Places a mark in the table. Marking is a process which allows for the localization

 * of variables. When a point in the processing is reached where you wish to localize

 * variables place a mark in the table and then when the table is {@link #demark demarked}

 * all variables put in since the mark are removed from the table.

 */

public void mark()

{

if(marksSize == marksCapacity)

{

int[] tempMarks = new int[marksCapacity * 2];

for(int i = 0; i < marksSize; i++)

tempMarks[i] = marks[i];

marks = tempMarks;

marksCapacity *= 2;

}

marks[marksSize] = size;

System.out.println("Mark set at " + size);

marksSize++;

}

/**

 * Removes all variables from the table added since the last {@link #mark}.

 * If there are no marks then the talbe is cleared.

 */

public void demark()

{

if(marksSize <= 0)

size = 0;

else

{

size = marks[marksSize - 1];

marksSize--;

}

}

}

Source Code for VariableTest

/**

 * This is a driver program to test the {@link Variable} class.

 *

 * @author Will Holcomb

 */

public class VariableTest

{

public static void main(String[] args)

{

Variable v = new Variable(new String("x"), 5);

System.out.println(v.name + " has a valueOf " + v.valueOf());

System.out.println("x" + " has a valueOf " + Variable.dereferencer().dereference("x"));

System.out.println("X" + " has a valueOf " + Variable.dereferencer().dereference("X"));

System.out.println("Marking table:");

Variable.dereferencer().mark();

v = new Variable(new String("alpha"), 5);

System.out.println("Variable.dereferencer().exists(\"alpha\") is "

 + Variable.dereferencer().exists("alpha"));

System.out.println(v.name + " has a valueOf " + v.valueOf());

System.out.println("Demarking table:");

Variable.dereferencer().demark();

System.out.println("Variable.dereferencer().exists(\"alpha\") is "

 + Variable.dereferencer().exists("alpha"));

System.out.println(v.name + " has a valueOf " + v.valueOf());

System.out.println("x" + " has a valueOf " + Variable.dereferencer().dereference("x"));

}

}

Applet destroyed

Program processed

Joint

Floor

is in

Link

Axis

Kill

Off

has

On

Robot

has

Factory Floor

Clear button pressed

Submit button pressed

Applet started

Parser

Movement Request Event

is in

has

has

Claw

Information entered in the program input box

Process

Program

Program Entered

Program

User

receives

throws

feeds

writes

views

JointX.addTheta(e.theta[x-1])

1

1

1

7

1

Idle

1

Parser

1

N

N

1

1

1

1

1

1

1

1

1

1

1

Robot.MovementRequested(e)

Process

JointX.reset()

Robot

Construct Robot

Idle

Process (see Figure 2:3) � REF _Ref450316591 \h ���
�� REF _Ref450316591 \h ���
�

receives event

construction complete

processing complete

JointX.toggleAxis()

reset

toggle axis X

rotate

theta = theta Initial

CalcTransform()

theta += newTheta

Theta=

Upper-bound

Theta=

Lower-bound

CalcTransform()

Theta<lower-bound

Theta>upper-bound

Theta set

Theta set

Theta >

lowerbound and < upperbound

Theta set

Test haveAxis

AxisAttachBG.removeChild(0); haveAxis=0

AxisAttachBG.addChild(0); haveAxis=0

haveAxis=1

haveAxis=0

PAGE
37

_986646711.doc
[image: image1.png]

